Application of Machine Learning for the
analysis of the Compton scattering data

Vahe Sokhoyan

A2 Collaboration Meeting
04.05.2023

jonannes GUTENBERG
UNIVERSITAT MAinZ

Instifat T

Kernphystk




Motivation

High precision experiments (including Compton scattering):

@ Limited by the presence backgrounds

@ Introduction by uncertainties in the process of background identification
@ Background subtraction leads to increased errors

@ In many cases the information about correlations of kinematic variables is lost

@ Preserving the correlations is important (event-by event approach), for phenomenological
analysis of experimental results

= Multivariate analysis with event-by-event handling of the data!
+ Classification and selection of signal instead of background subtraction

= Alternative to “conventional” reaction analysis is Machine Learning:
Building models performing tasks without explicit instructions
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Supervised and unsupervised Machine Learning

a)

Unsupervised learning

b)

Supervised learning

®° ° 0 ° o — Supervised learning with initially
- Oogo | e % “known” patterns and labeled data
5 g oo 2|® ® 006 — Unsupervised learning via clustering for
s oY - the data without labels
o o ° — Semi-supervised learning, e.g., with
Variavle 2 Variavle 2 labels created via clustering, or via
4 4 additional information (and in our case MC
,.... (e e . simulation)
| T e O oo 0% e
5| eve® e o N In this work:
| e® 0 “o| e — Multidimensional clustering of events
e o © with further classification (only statistical)
i Varabie 2 — Training models on MC or mixture of MC
Morimoto, Juliano & Ponton, Fleur. (2021) and data SampleS
/ SUPERVISED MACHINE LEARNING / UNCSEERIED MACHINEITERRING \
PREDICT
%ﬁ N\ TRAN @ N  PREDICT ; at}?y @ A ) k7
— / S
ST - RT3 ‘o
Al Model i\? 4
N SR ) g

https://abeyon.com/how-do-machines-learn/

“group 2"

v




Machine Learning algorithms

@ Multiple algorithms based of different principles are available: Deep Learning with
neural networks, decision trees, random forest, boosted decision trees, support
vectors machines (SVM), ....

Boosted decision trees: @
— Sequences (trees) of decisions
q ( ) ) + ¢ ot +
— Ensemble of decision trees
— Learning from previous training steps © 00 0 ..

— Very well suited for classification tasks

I
Neural networks:

— Structure of nodes sorted in layers with assignment/optimization of weights
— Sensitive to patterns/low-level features

— Requires more careful consideration when training

— Used as an alternative approach in this work
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Application of Machine Learning for Compton analysis

@ Multiple (pre) analyzed data sets present for Compton scattering above pion threshold —
improved background identification

@ Separation of 7~ background is very challenging, in particular on an event-by event basis

@ Presence of random timing background limits the accuracy of the measurements
(as in most for most of the other analyses at A2 and tagged photon facilities in general)
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— Separation of ° background from Compton events with Machine Learning

— New method for time background handling without random subtraction
— Qutlook for the analysis of Compton scattering data with Machine Learning



Separation of pion and Compton events: Input
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Input data for the model training;:
— 205 - 305 MeV, y + p events

— Notable overlap in 1D

— Complex shapes in 2D with
opportunity of separation

Processing the data:

— Mix Compton and pion events
— Reshuffle the (labeled) data

— Split the data into training
and validation data sets

— Train and evaluate the model
(boosted decision trees with
XGBoost/CatBoost or neural
network)



Separation of pion and Compton events: Predictions
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@ Predicted distributions for the
validation data set agree well
with the initial MC data set

(predicted with 99% accuracy)
— Application on the

experimental data
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Classification of pion and Compton events
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Machine Learning approach for handling random background
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@ Handle timing background needed for
ML-based data analysis

@ Limits precision of many experiments due to

subtraction of the background in the classical

method

Separation of the prompt (signal) events
with Machine Learning:

— Multidimensional clustering without labels
(purely statistical approach)

— MC-based approach using the simulation of
the known reaction and measured background
for training ML models (requires agreement
between data and MC)



Separation of random background with DBScan
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— 11° events in the prompt
peak (-2; 2) ns

— 240 -260 MeV
—myy, A, AO® cuts

— Unsupervised approach

— Separation with density-
based clustering algorithm
(DBScan)



Separation of random background with DBScan
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Separation of random background with DBScan
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From clustering to (semi)supervised learning
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10 Create a model from clustering

— Take signal from clustering

— Combine with pure background
sample outside of the prompt peak

— Create a model (semi-supervised
learning)

— Apply the model on another data set
(or part of the same data set)
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From clustering to (semi)supervised learning:
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Semi-supervised learning: Application on another data set
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Semi-supervised approach with simulated (MC) events
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— Create and train a model based on MC and
random background

— Select variables with agreement of MC and
prompt (+bg), but different from pure
background sample

— Apply the model on events in the prompt
region
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Semi-supervised approach with simulated (MC) events
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Machine Learning + MC: Predictions for different variables

Cross check: Comparison of the MC-based semi-supervised ML approach
With the standard subtraction method!
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@ ML predictions for the variables in good agreement with the standard method (pads 1-5)
@ Small differences on the edges are due to difference with MC and can be reduced
@ Prediction works with a similar quality for a variable not included as input (pad 6)



Outlook for a full Compton analysis with Machine Learning
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Software used in this work (along with A2 packages)

? . Cocviit "*hTJTensor
python

Keras XGBoost ¢ CatBoost

Matplotlib
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Summary and Outlook

New Machine Learning-based methods proposed for A2 analyses

@ The separation of Compton scattering and n° events works for simulated events

@ New methods for handling random background subtraction have been developed

@ Monte Carlo-based method with semi-supervised Machine Learning algorithms leads to
stable and accurate results

@ Clustering methods is applicable for unlabeled data — requires additional handling of the
data in many cases

@ Verification with the classical approach is important!

Outlook:

-~ Comprehensive analysis of the Compton scattering data with combination of the
developed methods

-+ Applicable for many of the A2 analyses and other experiments with tagged photons
-~ Improvement and more ambitious planning for the future experiments (Compton
scattering with TPC as an active target, ...)
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Summary and Outlook

New Machine Learning-based methods proposed for A2 analyses

@ The separation of Compton scattering and n° events works for simulated events

@ New methods for handling random background subtraction have been developed

@ Monte Carlo-based method with semi-supervised Machine Learning algorithms leads to
stable and accurate results

@ Clustering methods is applicable for unlabeled data — requires additional handling of the
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Outlook:

-~ Comprehensive analysis of the Compton scattering data with combination of the
developed methods

-+ Applicable for many of the A2 analyses and other experiments with tagged photons
-~ Improvement and more ambitious planning for the future experiments (Compton
scattering with TPC as an active target, ...)

Thank you for your attention!

18



Semi-supervised learning: Application on another data set
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