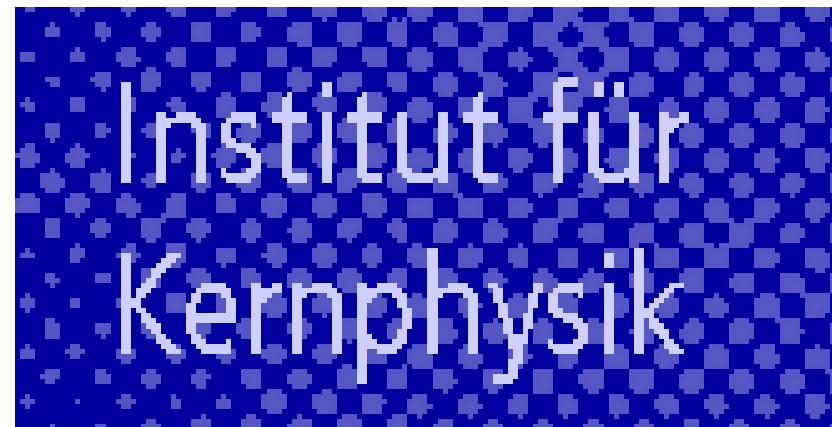


Application of Machine Learning for the analysis of the Compton scattering data

Vahe Sokhoyan

A2 Collaboration Meeting
04.05.2023



Motivation

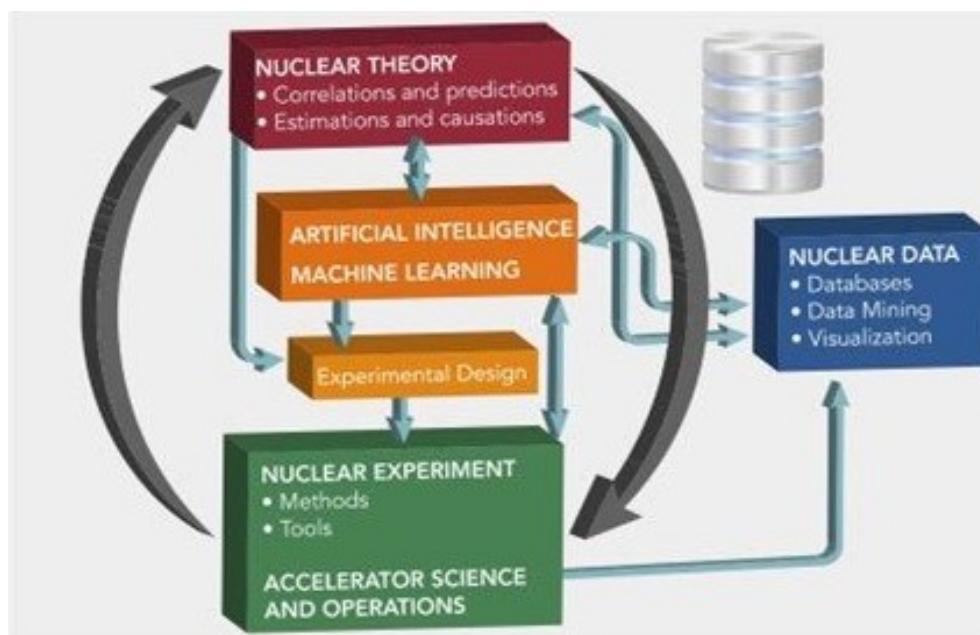
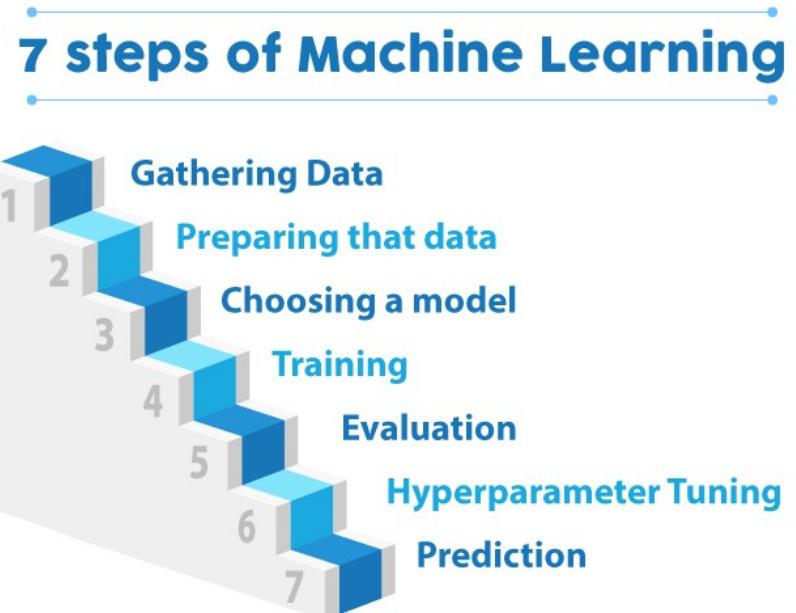
High precision experiments (including Compton scattering):

- Limited by the presence backgrounds
- Introduction by uncertainties in the process of background identification
- Background subtraction leads to increased errors
- In many cases the information about correlations of kinematic variables is lost
- Preserving the correlations is important (event-by event approach), for phenomenological analysis of experimental results

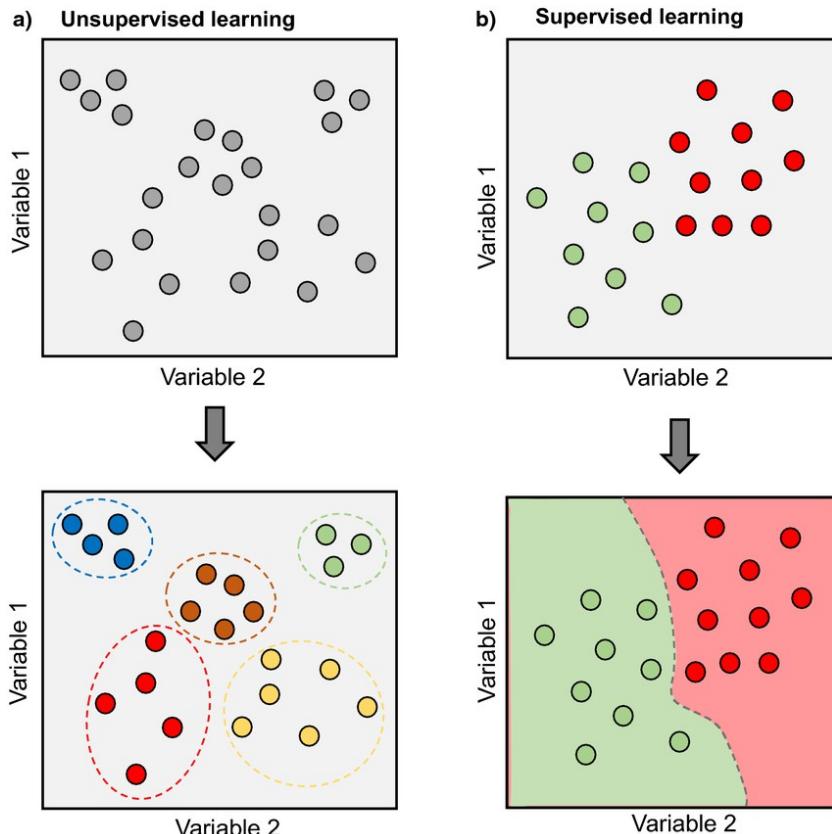
→ Multivariate analysis with event-by-event handling of the data!

→ Classification and selection of signal instead of background subtraction

→ Alternative to “conventional” reaction analysis is Machine Learning:
Building models performing tasks without explicit instructions



Supervised and unsupervised Machine Learning

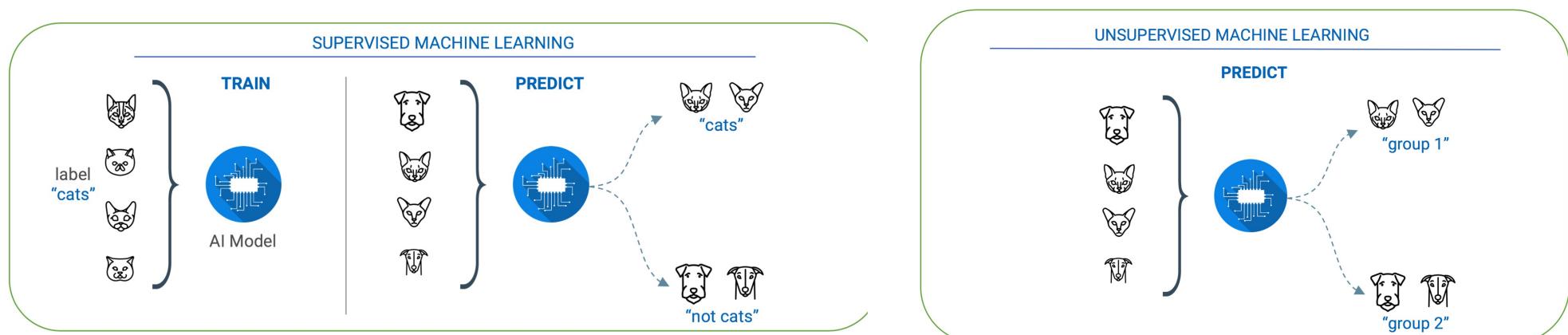


Morimoto, Juliano & Ponton, Fleur. (2021)

- Supervised learning with initially “known” patterns and labeled data
- Unsupervised learning via clustering for the data without labels
- Semi-supervised learning, e.g., with labels created via clustering, or via additional information (and in our case MC simulation)

In this work:

- Multidimensional clustering of events with further classification (only statistical)
- Training models on MC or mixture of MC and data samples

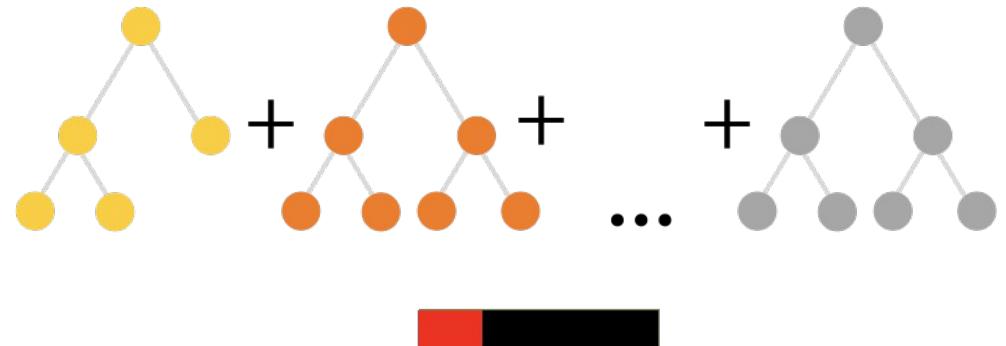


Machine Learning algorithms

- Multiple algorithms based of different principles are available: Deep Learning with neural networks, decision trees, random forest, boosted decision trees, support vectors machines (SVM),

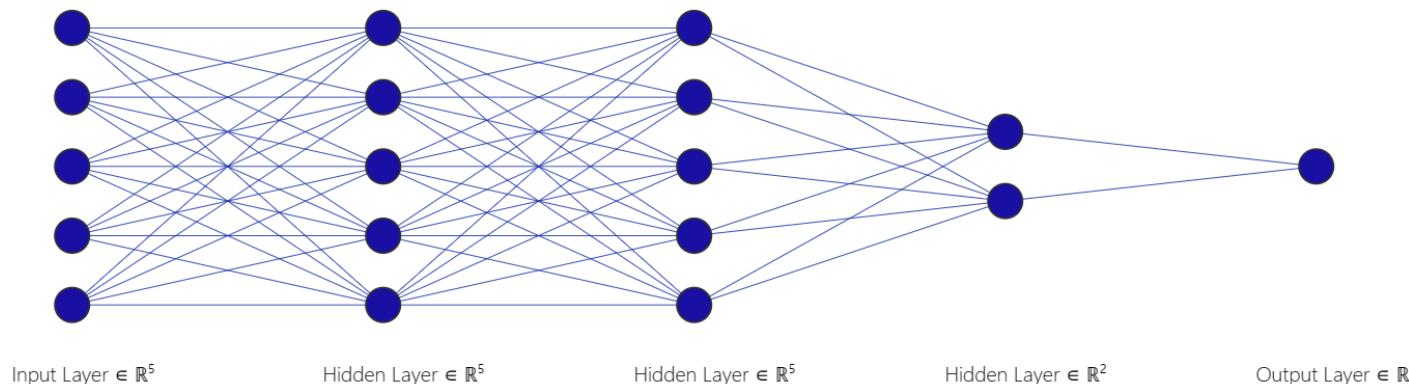
Boosted decision trees:

- Sequences (trees) of decisions
- Ensemble of decision trees
- Learning from previous training steps
- Very well suited for classification tasks



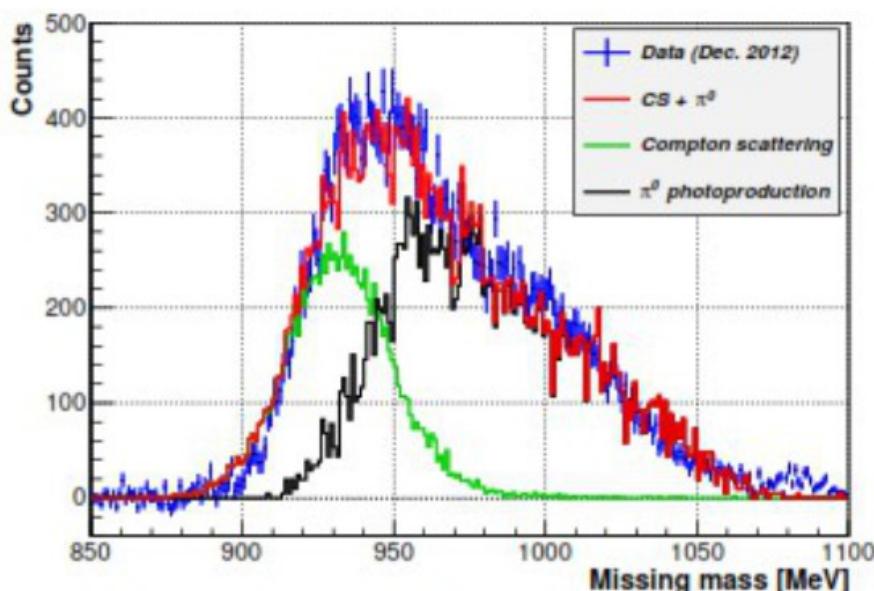
Neural networks:

- Structure of nodes sorted in layers with assignment/optimization of weights
- Sensitive to patterns/low-level features
- Requires more careful consideration when training
- Used as an alternative approach in this work

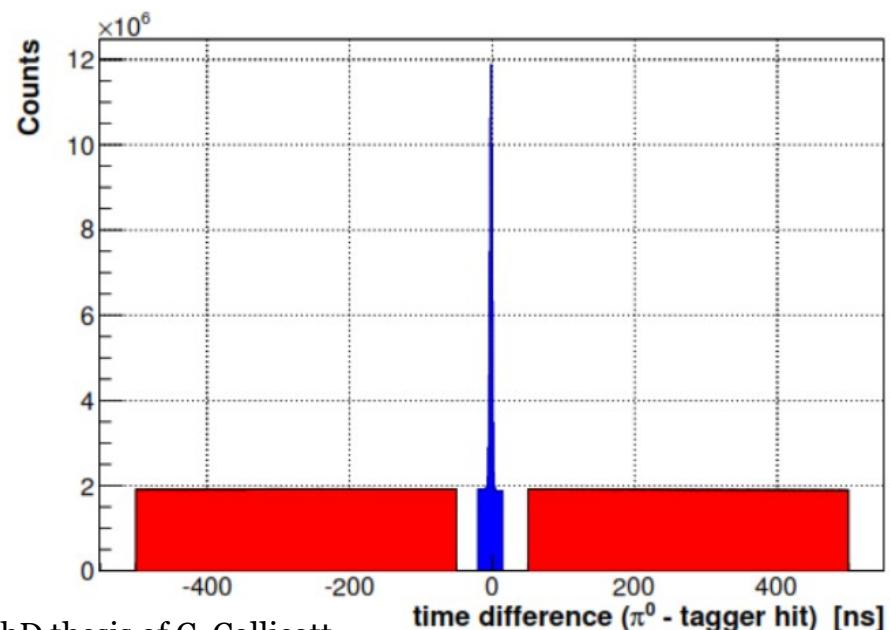


Application of Machine Learning for Compton analysis

- Multiple (pre) analyzed data sets present for Compton scattering above pion threshold → improved background identification
- Separation of π^0 background is very challenging, in particular on an event-by event basis
- Presence of random timing background limits the accuracy of the measurements (as in most for most of the other analyses at A2 and tagged photon facilities in general)



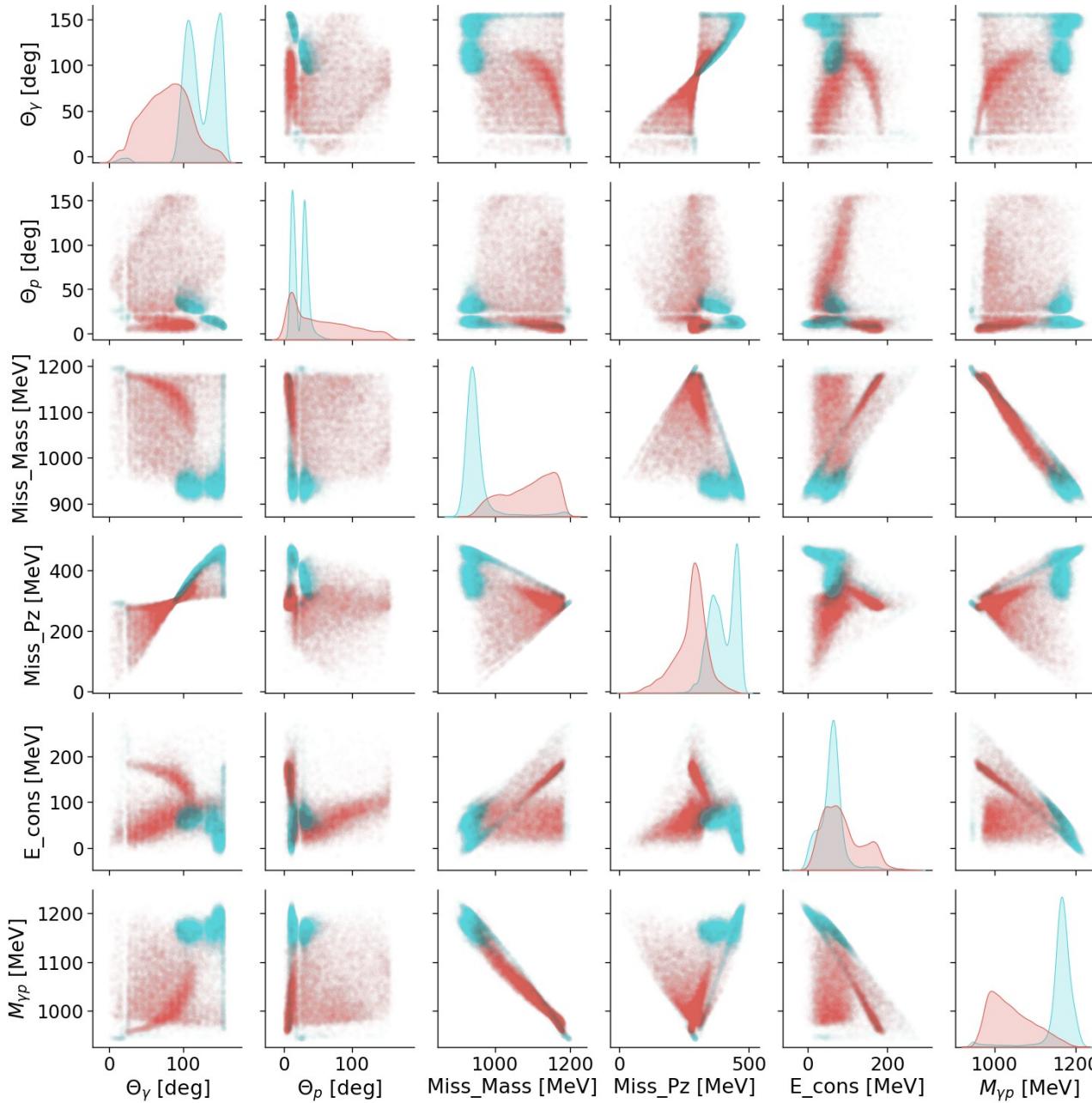
(c) $\theta = 90^\circ$ to 100°



Figures from PhD thesis of C. Collicott

- Separation of π^0 background from Compton events with Machine Learning
- New method for time background handling without random subtraction
- Outlook for the analysis of Compton scattering data with Machine Learning

Separation of pion and Compton events: Input



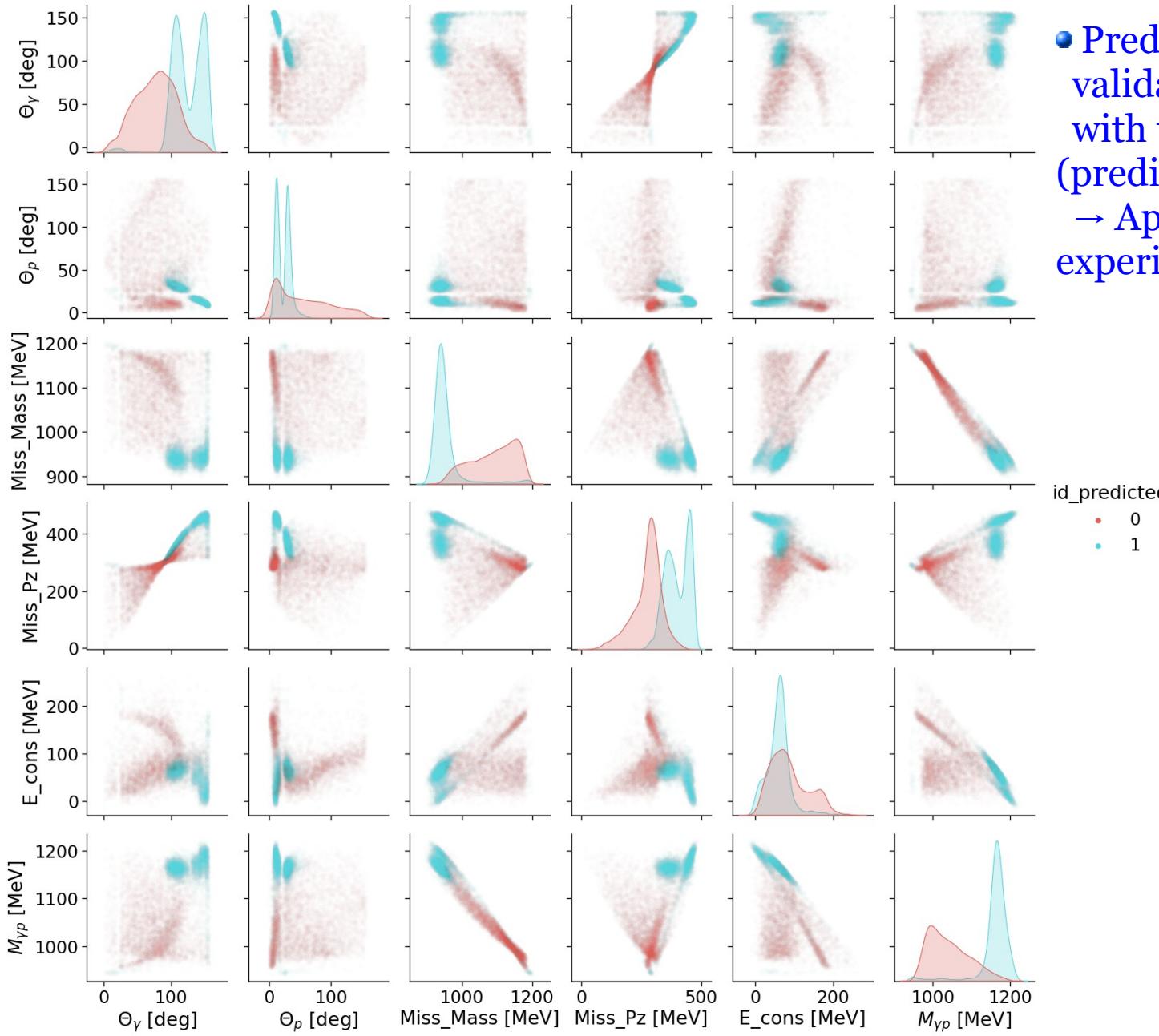
Input data for the model training:

- 295 - 305 MeV, $\gamma + p$ events
- Notable overlap in 1D
- Complex shapes in 2D with opportunity of separation

Processing the data:

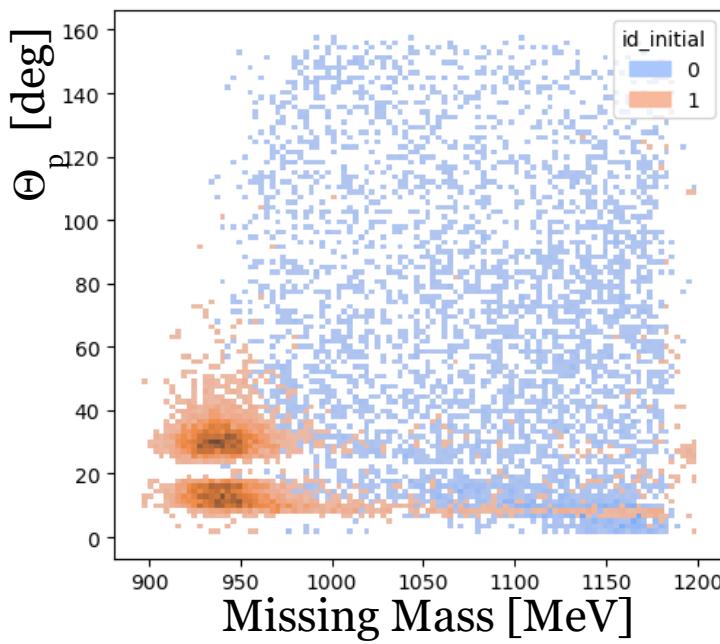
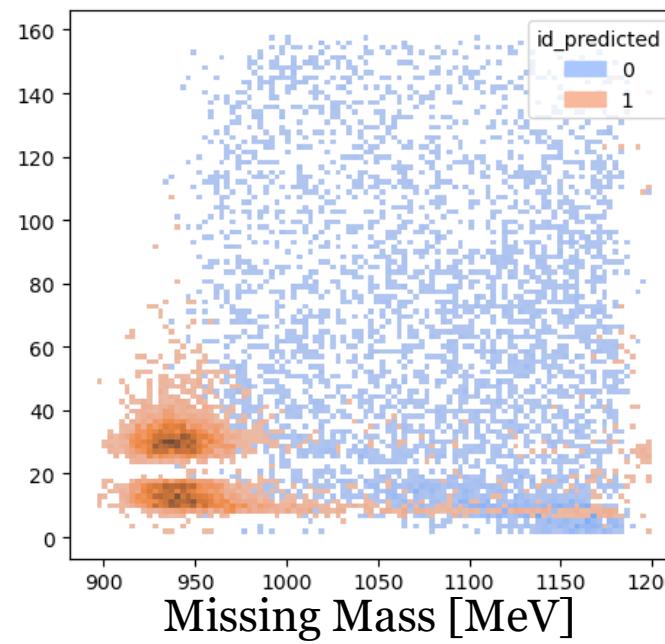
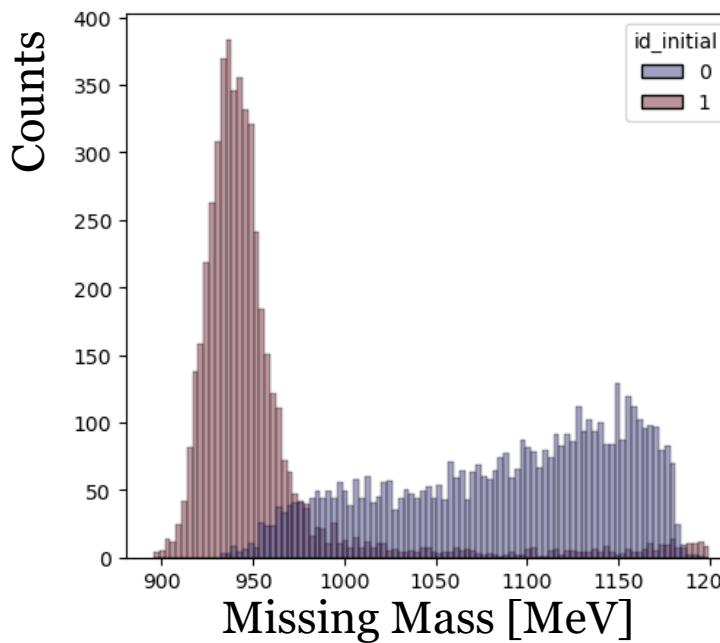
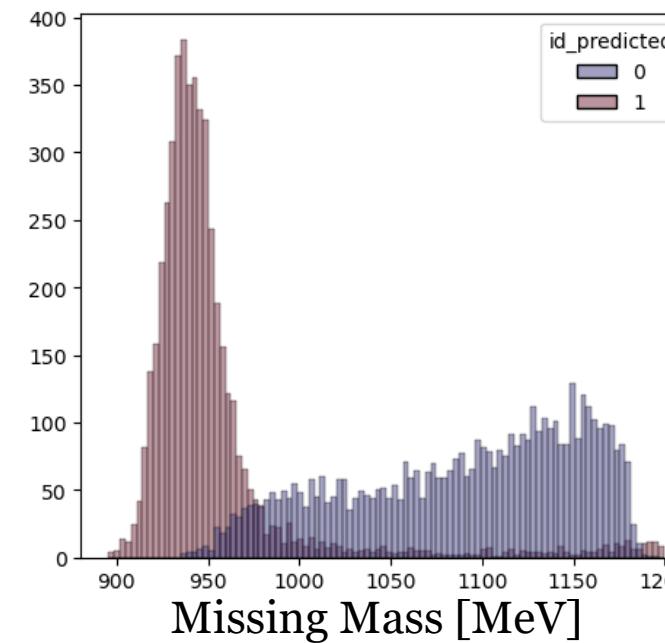
- Mix Compton and pion events
- Reshuffle the (labeled) data
- Split the data into training and validation data sets
- Train and evaluate the model (boosted decision trees with XGBoost/CatBoost or neural network)

Separation of pion and Compton events: Predictions



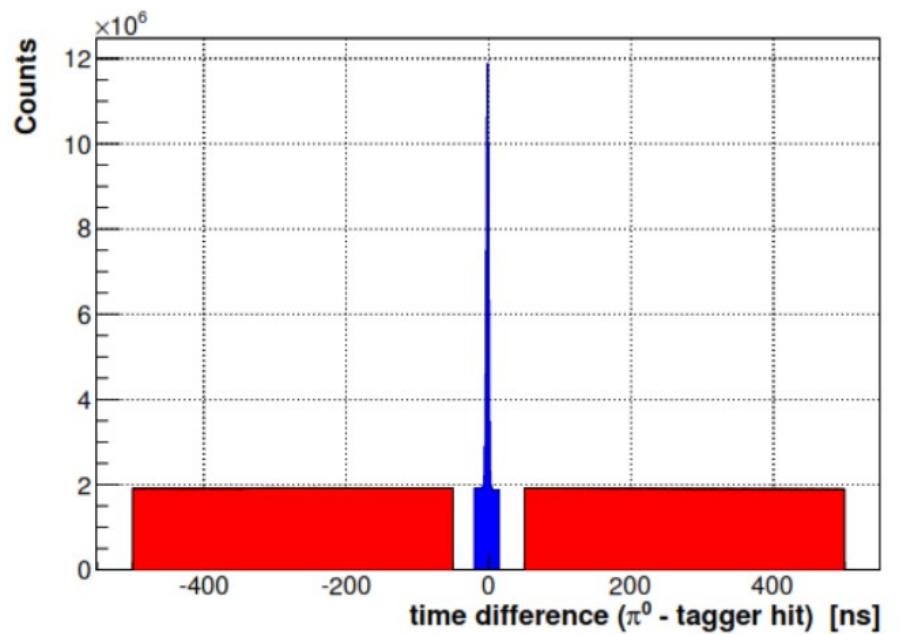
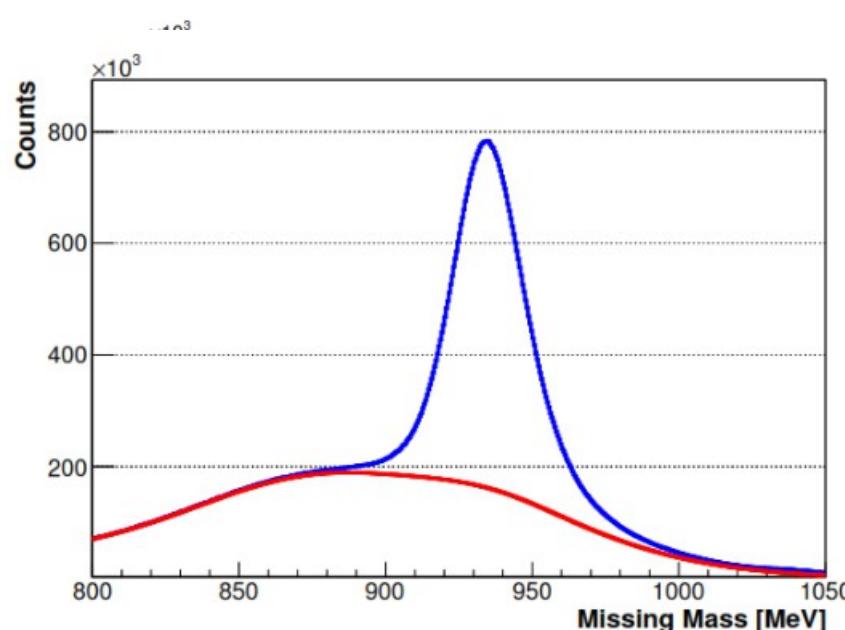
- Predicted distributions for the validation data set agree well with the initial MC data set (predicted with 99% accuracy)
→ Application on the experimental data

Classification of pion and Compton events



Initial and predicted data agree (also in the overlap region)

Machine Learning approach for handling random background



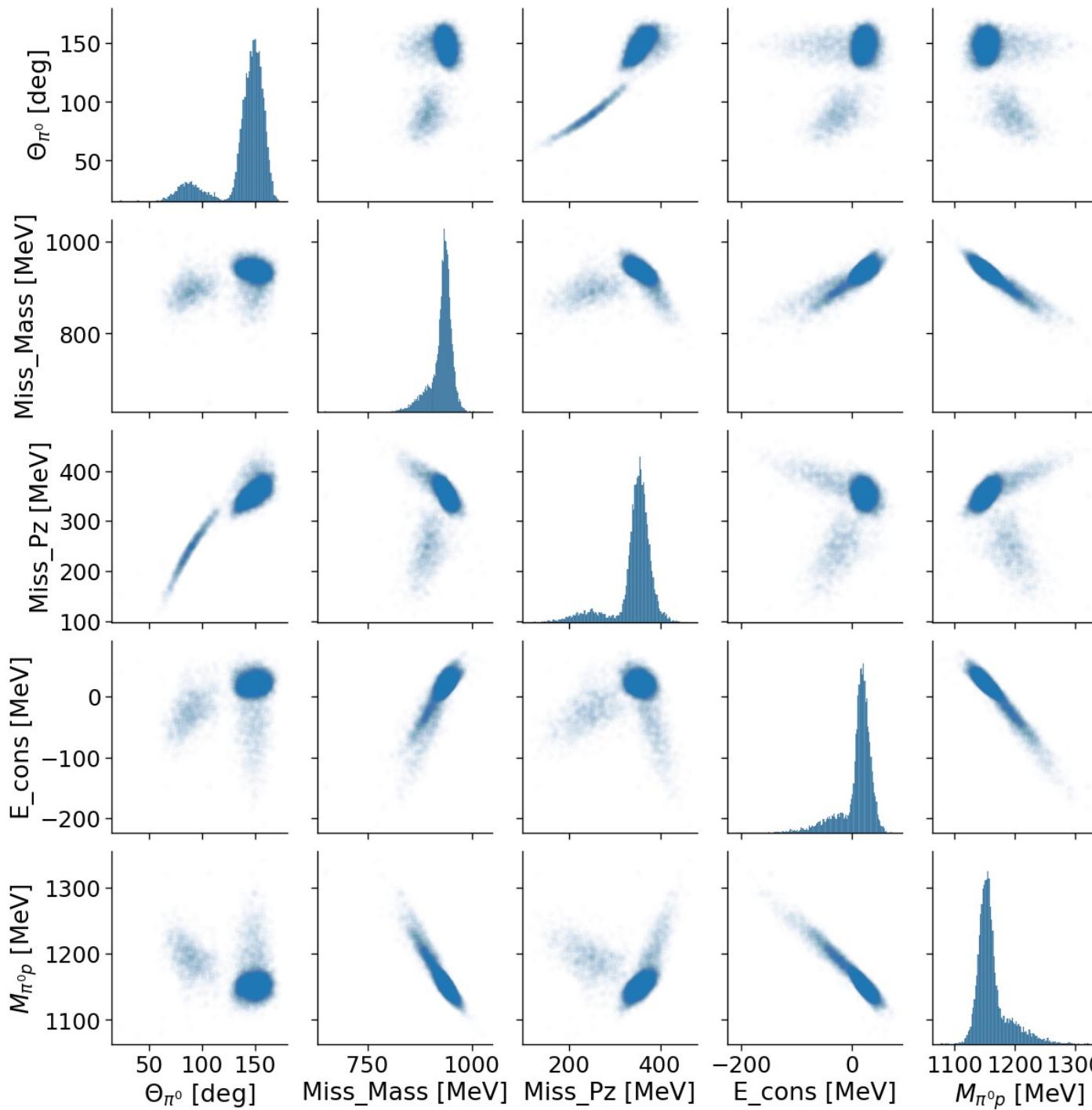
Figures from PhD thesis of C. Collicott

- Handle timing background needed for ML-based data analysis
- Limits precision of many experiments due to subtraction of the background in the classical method

Separation of the prompt (signal) events with Machine Learning:

- Multidimensional clustering without labels (purely statistical approach)
- MC-based approach using the simulation of the known reaction and measured background for training ML models (requires agreement between data and MC)

Separation of random background with DBScan



→ π^0 events in the prompt peak (-2; 2) ns

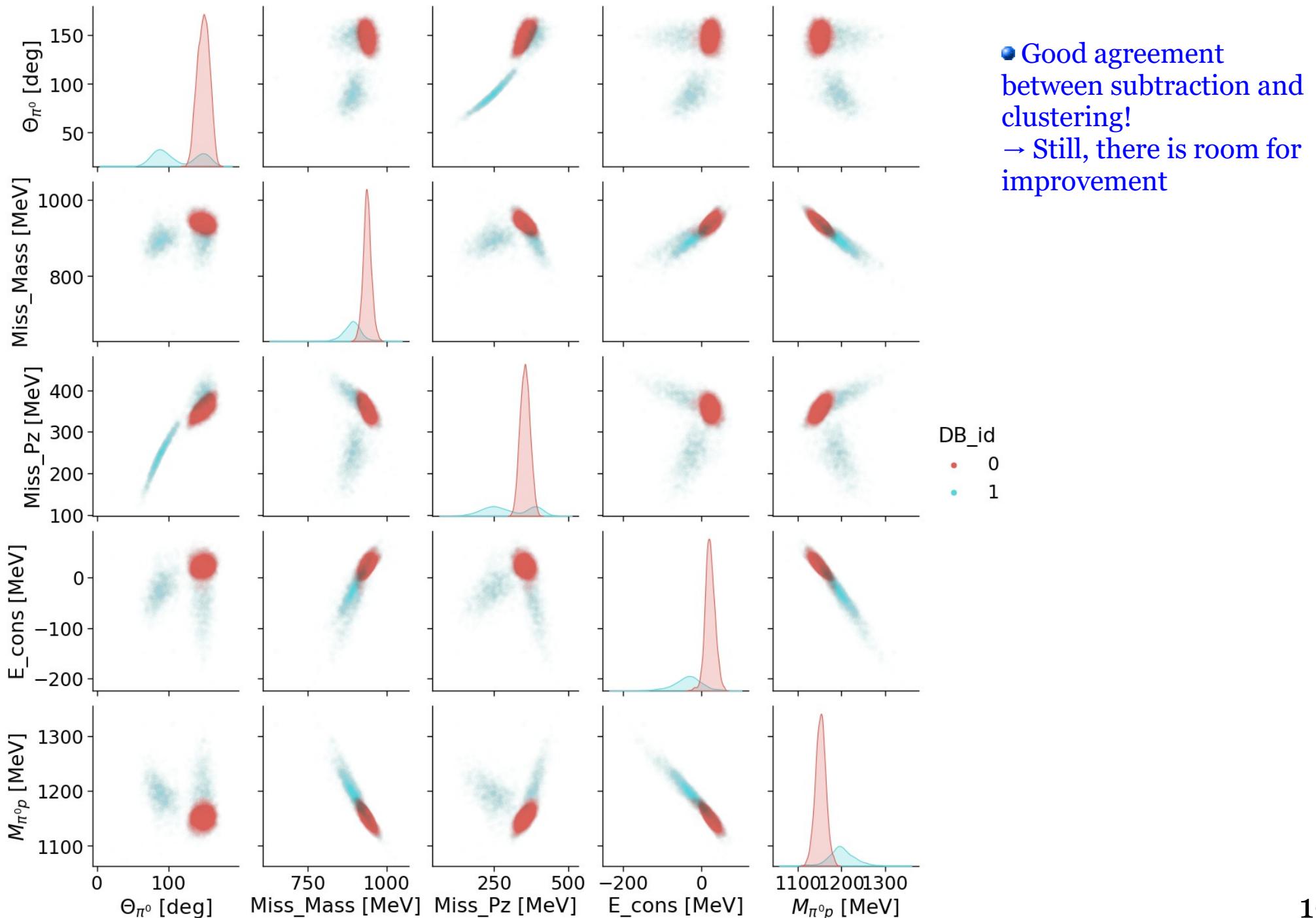
→ 240 -260 MeV

→ $m\gamma\gamma$, $\Delta\phi$, $\Delta\Theta$ cuts

→ Unsupervised approach

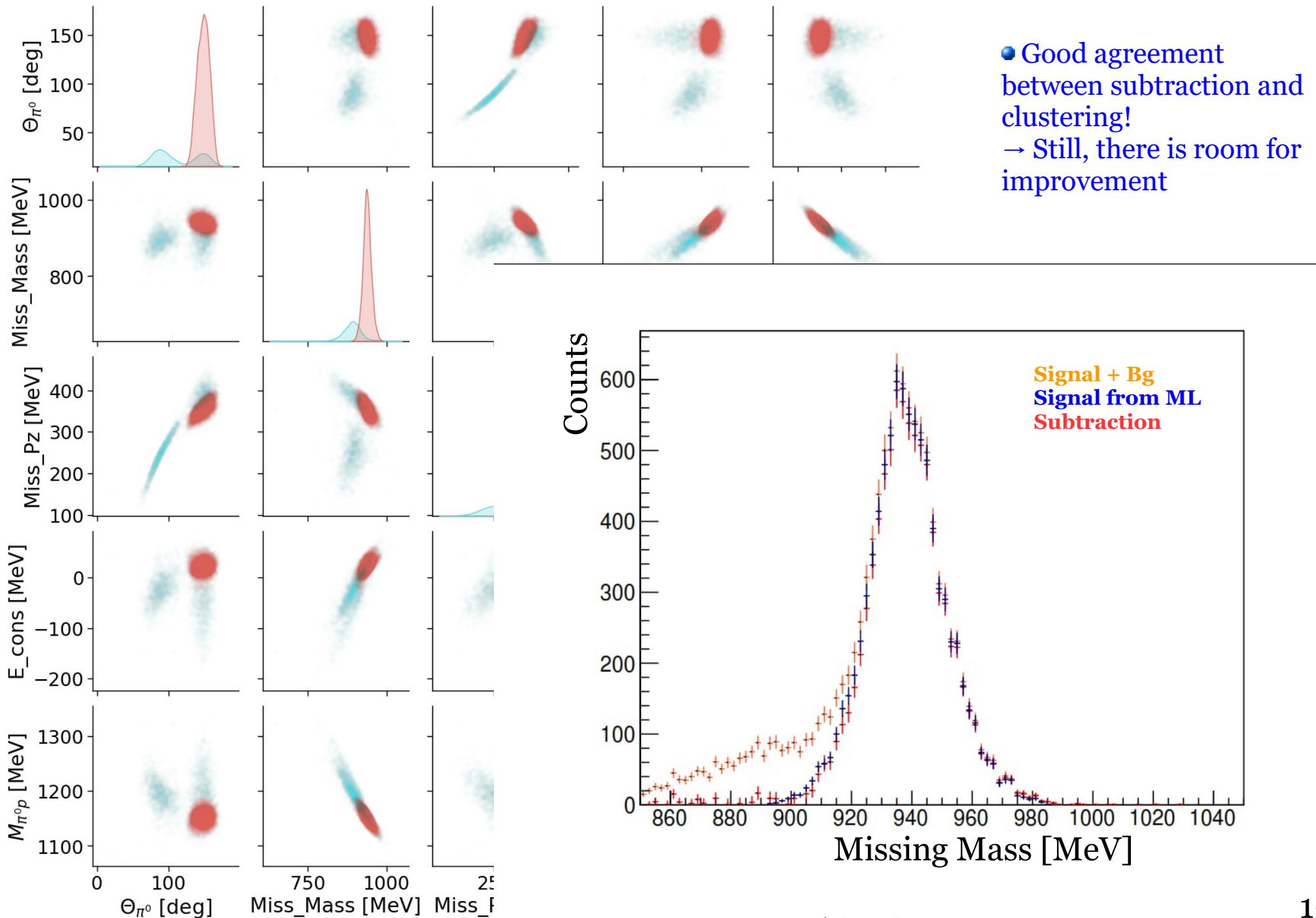
→ Separation with density-based clustering algorithm (DBScan)

Separation of random background with DBScan

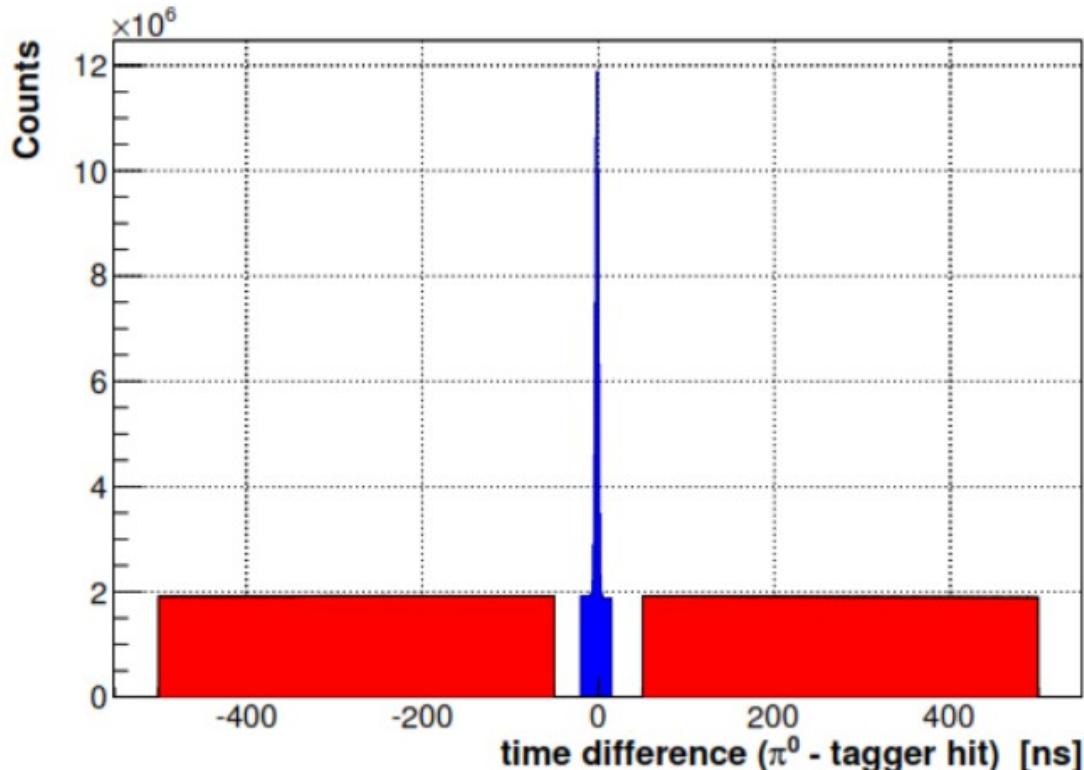


• Good agreement
between subtraction and
clustering!
→ Still, there is room for
improvement

Separation of random background with DBScan



From clustering to (semi)supervised learning



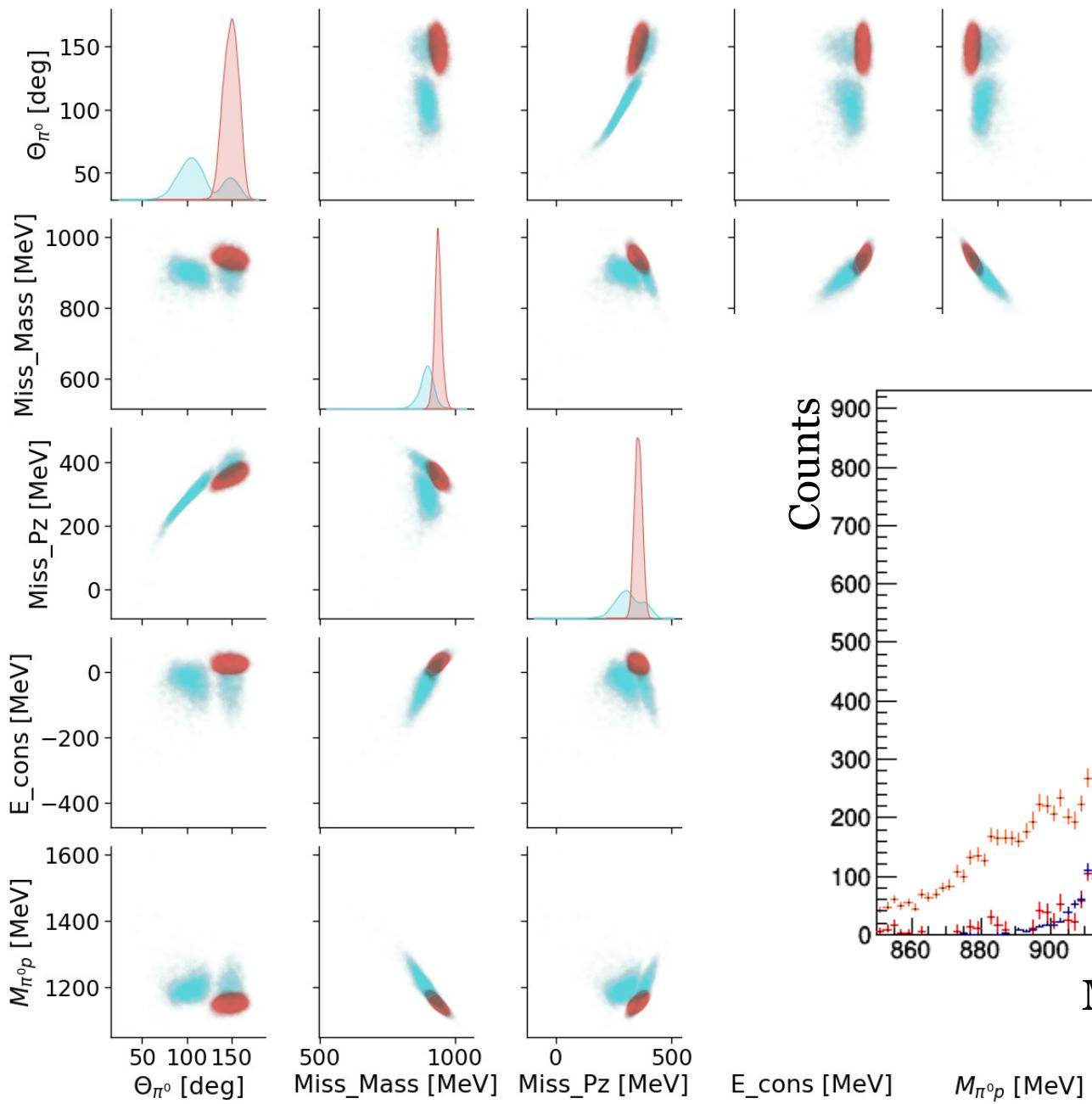
- >Create a model from clustering
 - Take signal from clustering
 - Combine with pure background sample outside of the prompt peak
 - Create a model (semi-supervised learning)
 - Apply the model on another data set (or part of the same data set)

From clustering to (semi)supervised learning:



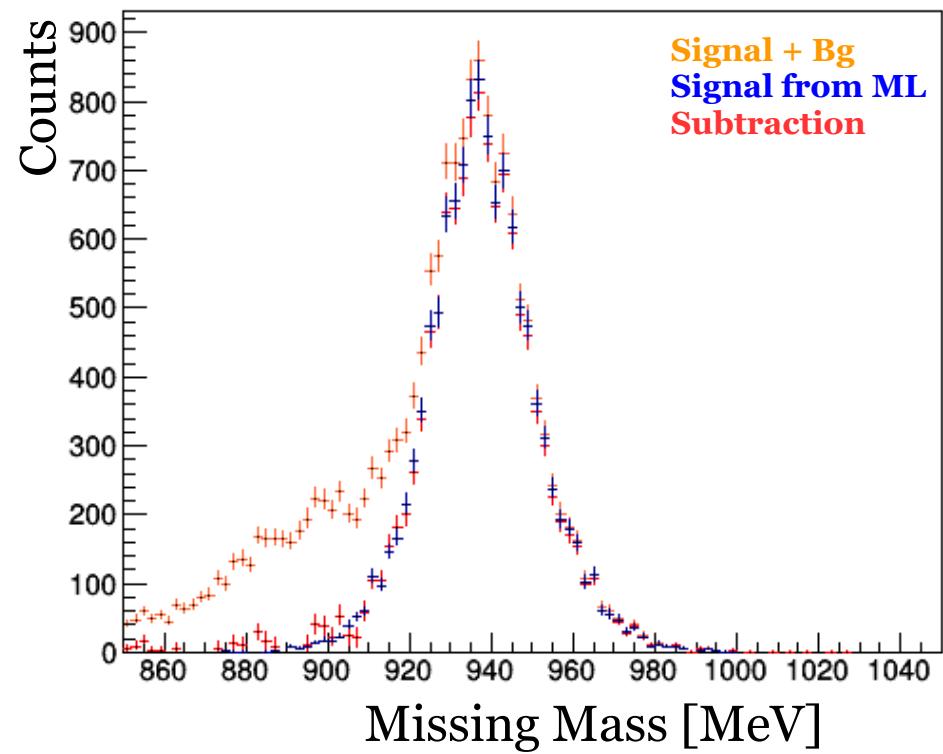
Application of the model made from clustering on another data set

Semi-supervised learning: Application on another data set

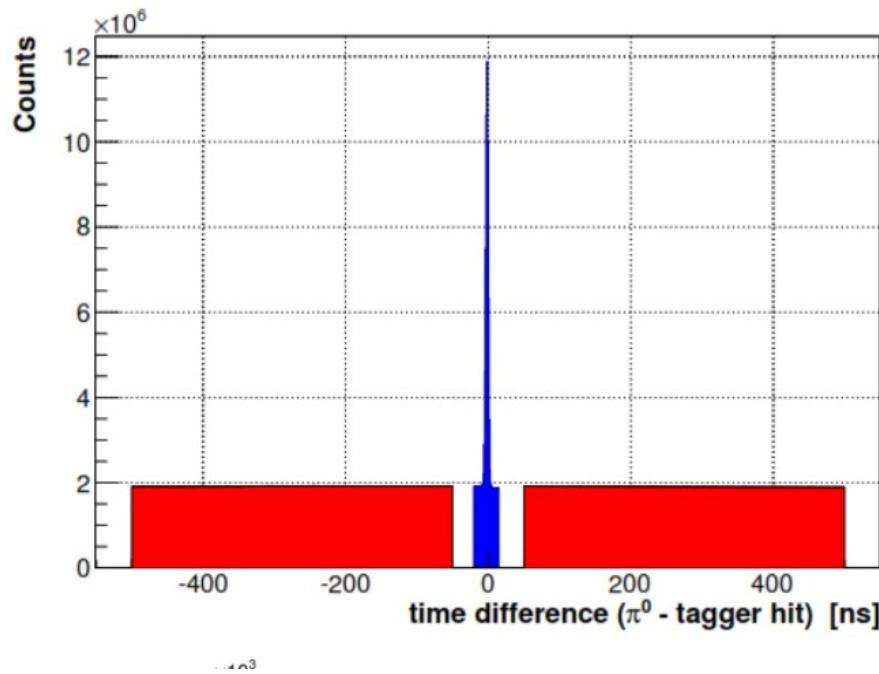
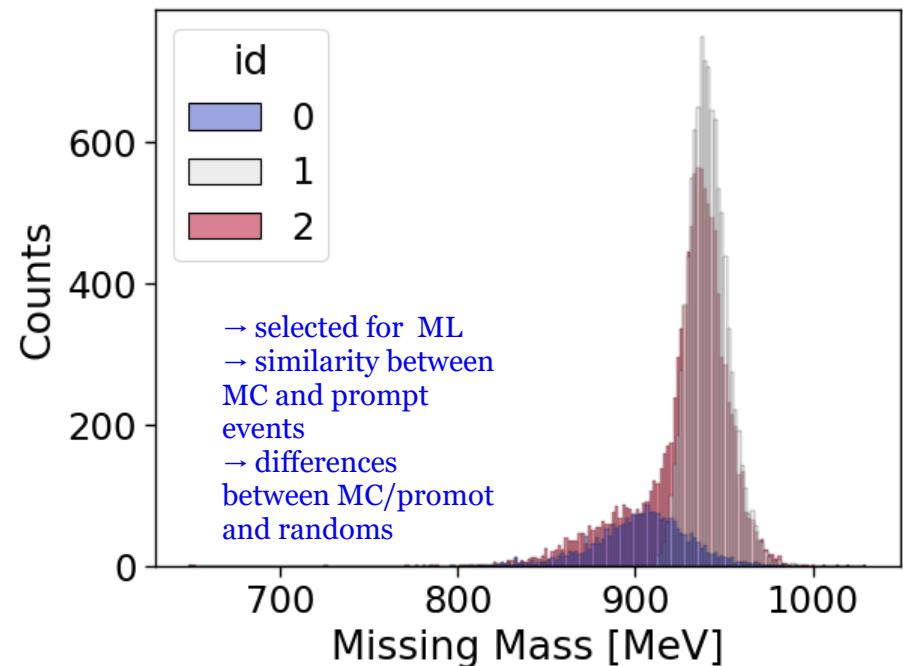


Application of the model made from clustering on another data set

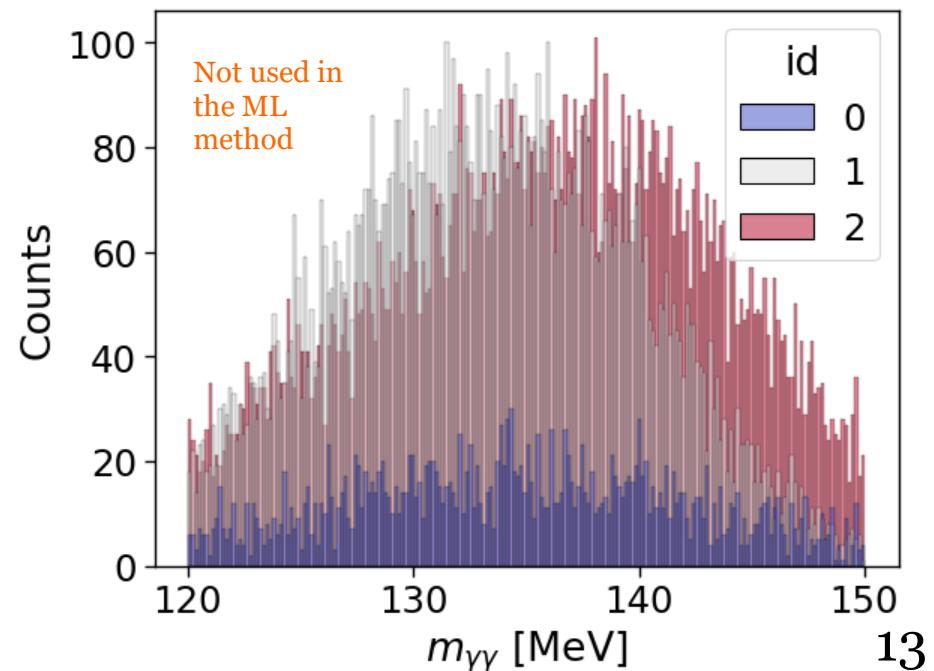
- Semi-supervised approach
- (Even) better agreement with the subtraction method



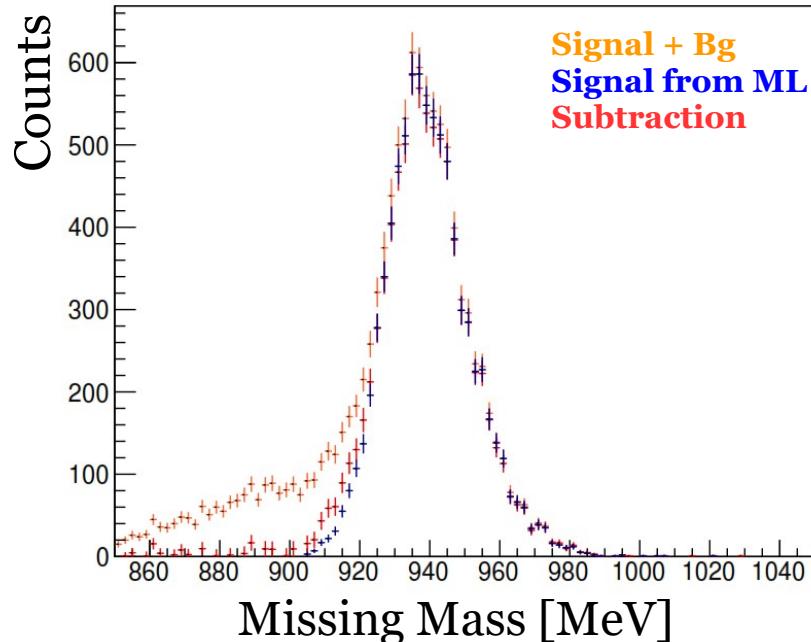
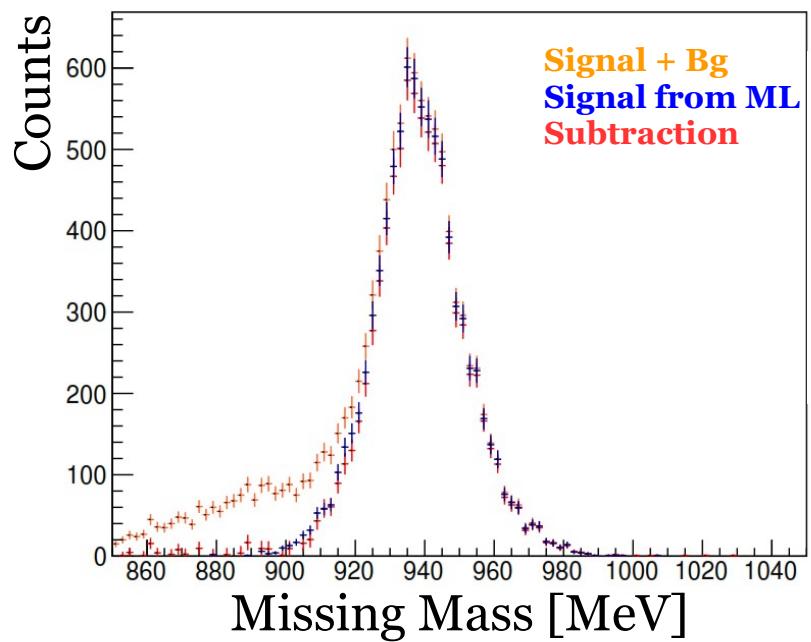
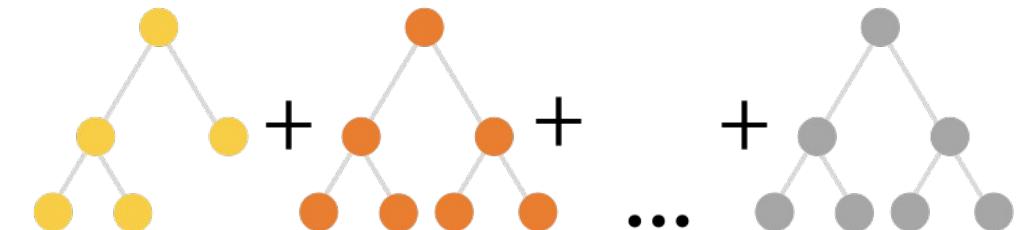
Semi-supervised approach with simulated (MC) events



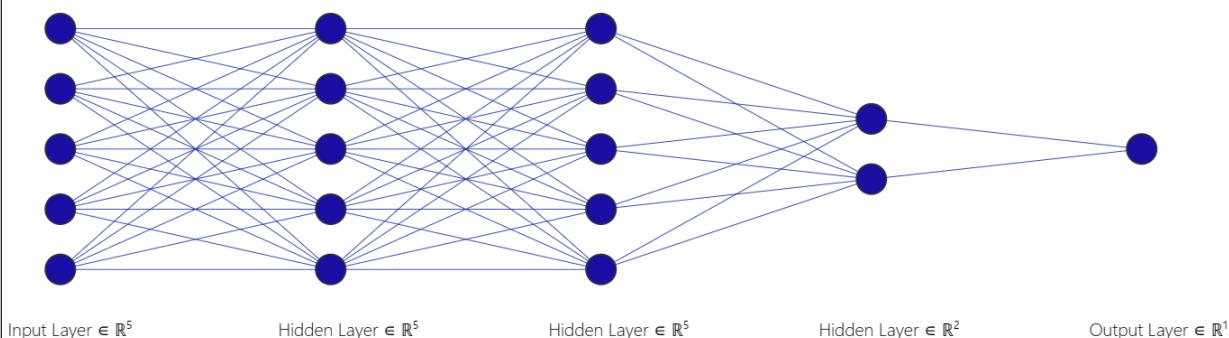
- Create and train a model based on MC and random background
- Select variables with agreement of MC and prompt (+bg), but different from pure background sample
- Apply the model on events in the prompt region



Semi-supervised approach with simulated (MC) events

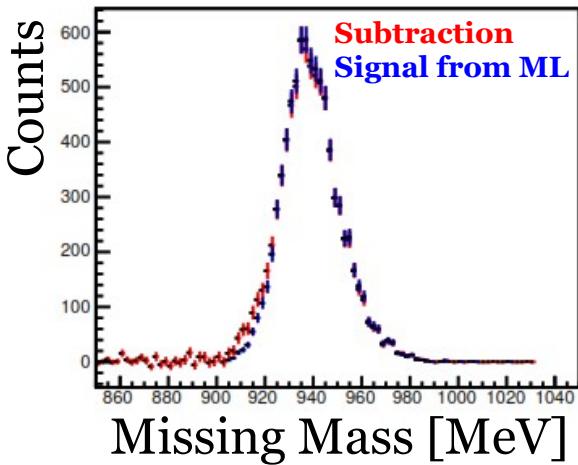
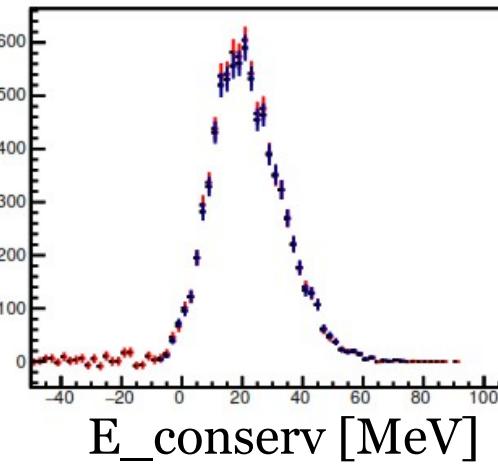
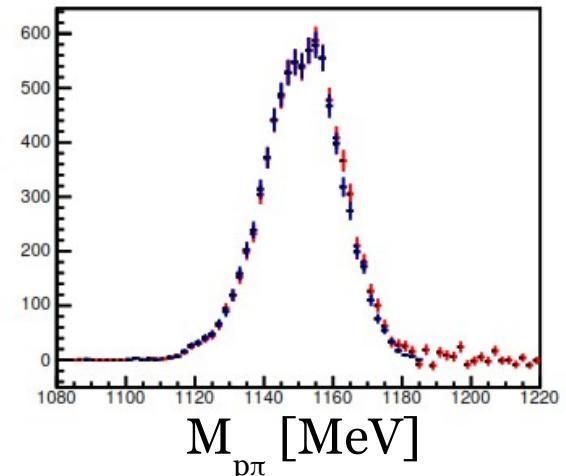
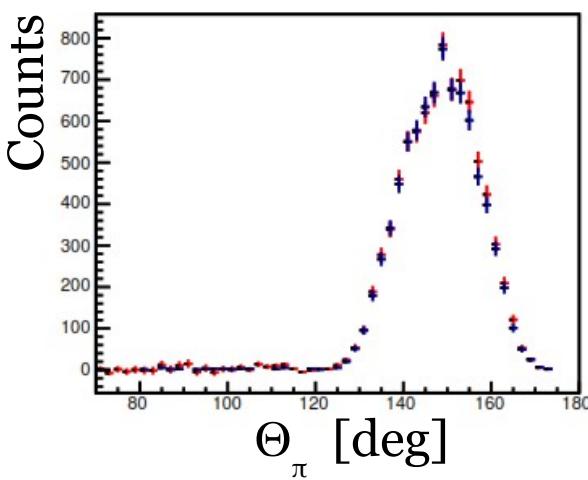
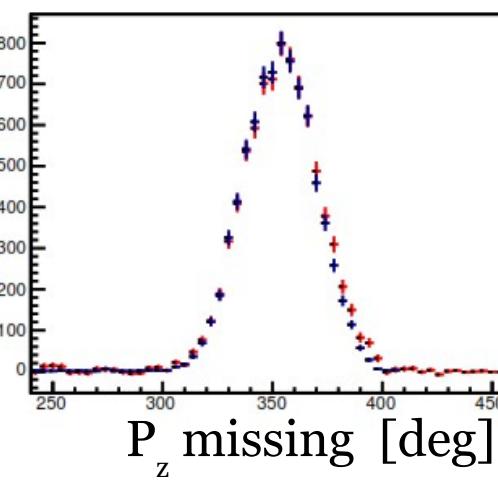
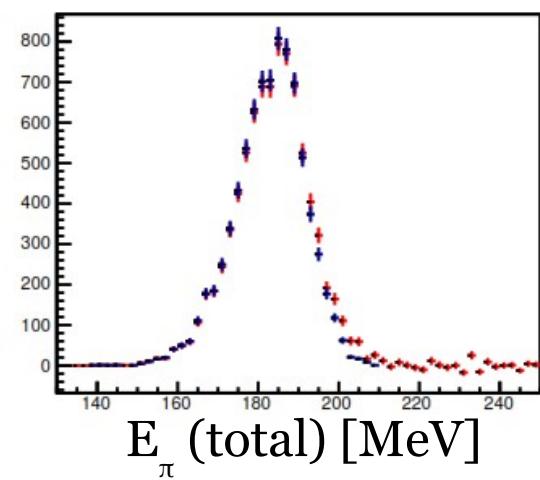


CatBoost



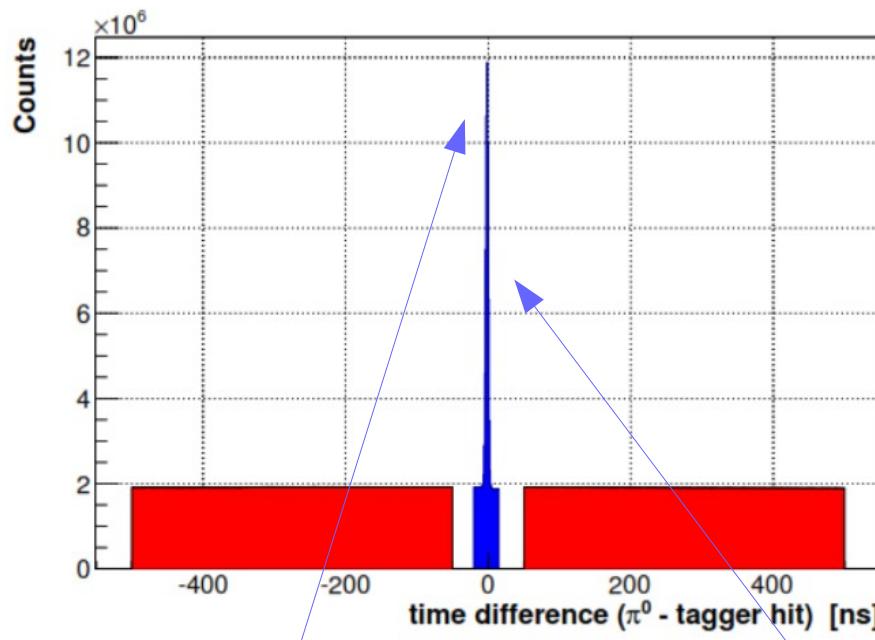
Machine Learning + MC: Predictions for different variables

Cross check: Comparison of the MC-based semi-supervised ML approach
With the standard subtraction method!



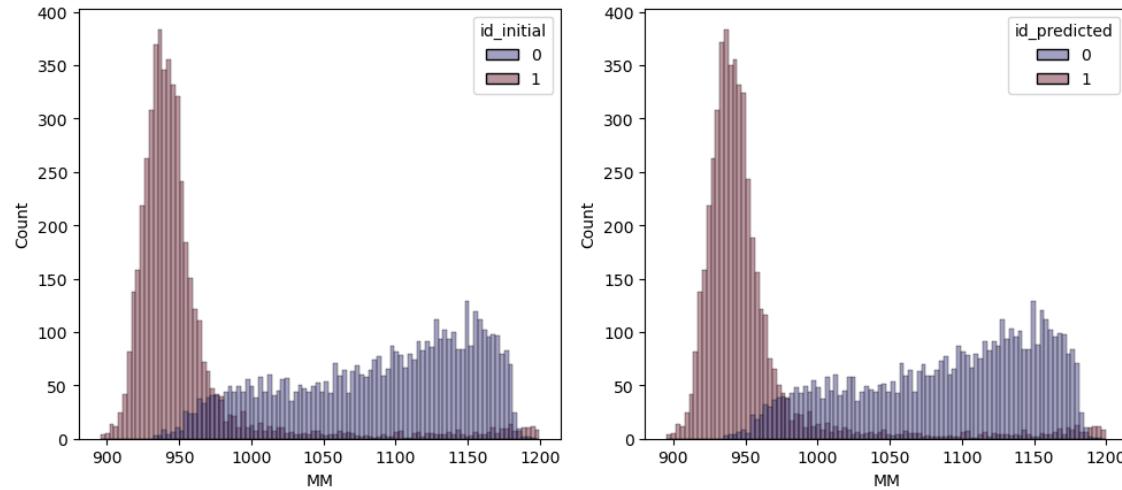
- ML predictions for the variables in good agreement with the standard method (pads 1-5)
- Small differences on the edges are due to difference with MC and can be reduced
- Prediction works with a similar quality for a variable not included as input (pad 6)

Outlook for a full Compton analysis with Machine Learning

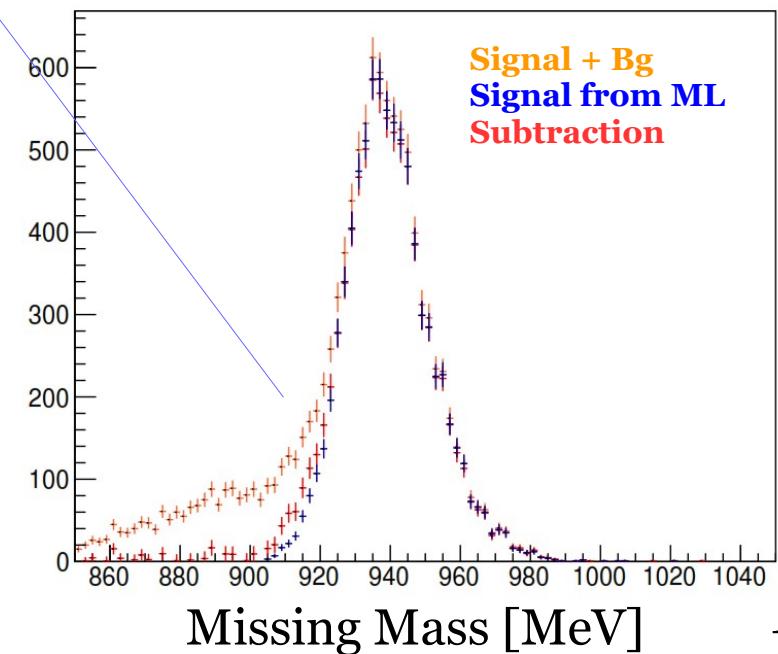


- Analysis of 3 classes of events (Compton, pion, random)
- Creating a Machine Learning Model with the 3 classes
- Combinations of supervised and unsupervised approaches possible

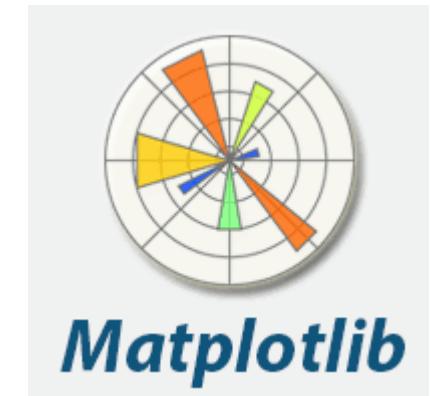
Training MC to separate Compton/pion signals



Apply the ML-based method for random background subtraction



Software used in this work (along with A2 packages)



Summary and Outlook

New Machine Learning-based methods proposed for A2 analyses

- The separation of Compton scattering and π^0 events works for simulated events
- New methods for handling random background subtraction have been developed
- Monte Carlo-based method with semi-supervised Machine Learning algorithms leads to stable and accurate results
- Clustering methods is applicable for unlabeled data → requires additional handling of the data in many cases
- Verification with the classical approach is important!

Outlook:

- Comprehensive analysis of the Compton scattering data with combination of the developed methods
- Applicable for many of the A2 analyses and other experiments with tagged photons
- Improvement and more ambitious planning for the future experiments (Compton scattering with TPC as an active target, ...)

Summary and Outlook

New Machine Learning-based methods proposed for A2 analyses

- The separation of Compton scattering and π^0 events works for simulated events
- New methods for handling random background subtraction have been developed
- Monte Carlo-based method with semi-supervised Machine Learning algorithms leads to stable and accurate results
- Clustering methods is applicable for unlabeled data → requires additional handling of the data in many cases
- Verification with the classical approach is important!

Outlook:

- Comprehensive analysis of the Compton scattering data with combination of the developed methods
- Applicable for many of the A2 analyses and other experiments with tagged photons
- Improvement and more ambitious planning for the future experiments (Compton scattering with TPC as an active target, ...)

Thank you for your attention!

Semi-supervised learning: Application on another data set

