Baryon spectroscopy and properties:
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Baryon resonances

Goal: Gain a good understanding of the spectrum and properties of baryon resonances
Experimentally: Broad overlapping resonances
-~ Partial Wave Analysis necessary
+~ Measurement of cross-sections and polarization observables
= Different production channels

+
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+ Channels different from N — Photoproduction experiments

= Production on the proton (e.g., 7, n, ', 2n°, n’n, w,...)
+~ Production of mesons on light and heavy nuclei:
baryon spectroscopy and search for in-medium modifications o



Motivation and outline

observables

“Complete experiment” for single meson set

photoproduction: 8 carefully selected observables,

15 observables for double meson final states single | S

beam- BT

-~ Experiments with polarized beams and targets, LZ?:
measurement of recoil polarization recoil | BR

- Relatively scarce data set for the neutron target [ o

-~ Ongoing effort at ELSA, JLab, MAMI,... “recoil
In this talk: 100000 ;

- Selected results for the meson photoproduction F YyN-mB
on the proton and neutron 5000 |

= Search for d*(2380) — comprehensively covered | 25667 Pol
in the morning session by Dan Watts (York) 2 50000 [

-~ Example: Set of measurements for photoproduction < [
of t°n pairs from the proton to lead o5000 |

-~ Compton scattering on nucleons and nuclei
-~ New opportunities for the field with active targets
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In memory of Prof. Bernd Krusche

From whom we had an honor to learn and to work with...



Selected unpolarized results A2
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CBELSA/TAPS: Sequential decays in double n° production
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Example: Accessing reaction mechanisms with polarized photons
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A2: Single n° photoproduction (deuteron target)

T P P [ e v wa i nak

...................................

Wey, = 1195 MeV We-fm?f

W, = 1255 Me¥

- My = 13T MeV. . fe Wy = 3393 MeV.....L......

.
E . = . il

i L i = 4 4 k. Y i
FREN. B0 ) | . bessssins Assassiasdioians V. B i
: 4 e ! : :

it Bl

e o ________ _:r ____E.___ .__.i_.____
H 2
i Pt fisivatai e il s i CRE N s e

1 : I i i I

My = 2411 MeV...

i |2

. = 4428 Mo¥

b aliana

_____________

........ [ T TTR SRR S

|

.=.4519 MeV.

cereei Moy = 4555 MeV.... | Wi =- 1572 MEV.. ...
y! i : LA . i 5 E

.............................................................

e

Al | e e A Yt
: : : .

(64— 0p)

25005
co s(ﬂf;"}

F. Cividini et al. [A2 Collaboration], EPJA 58 113 (2022)

(64 + 0p)

A2: quasi-free proton
CBELSA/TAPS: free proton

==

SAID-MA19

MAID-2021
BNGa-2019

—

Nuclear model (A. Fix)

Free
proton

Generally: agreement between data
for the free and quasi-free protons!



GRAAL: Single n° photoproduction on the deuteron
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A2: Single n° photoproduction on the neutron (deuteron target)

E asymmetry

W = 1897 Me\f{

F. Cividini et al. [A2 Collaboration], EPJA 58 113 (2022)

Many more recent data from CLAS, ELSA, MAMI,...
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A2: quasi-free proton
CBELSA/TAPS: free proton
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Nuclear model (A. Fix)

No previous data!
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CLAS: E observable for K'Y on the neutron

L Di_ _________________________ | Wrewly  fm. le T -
—osf- + 1 — No previous data exists!
[ 1.1<E,<1.3 GeV T 1.3<E,<1.5 GeV | — PWA predictions do not describe the data

~1Fw=1.795 Gev T W=1.880 GeV ] e g .
o — Significant impact

— Reduction of ¥*in the BnGa PWA fit when adding
D13 at 2170 MeV

— Stronger improvement in y* of the fits of the

- 1.5<E,<1.7 GeV 1 1.7<E <1.9 GeV

1,965 Gev 3 w=2.060 Gev 1 existing LEPS data on X a with D13 resonance

"1 LEPS: H. Kohri et al. Phys. Rev. Lett., 97, 082003 (2006)
— Recommendation in N. Zachariou et al. (2020):

Obtain new precise data on 2 (!)

E1.9-=E.,'=2.1 GeV T 2.1<E,<2.3 GeV
—1FW=2.150 GeV + W=2.230 GeV .
| I NS T B R | | IS S T ST MU ST N R |
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BnGa-2017 solutions (prediction)
BnGa fit including the new data
BnGa fit including the new data + D13 at 2170 MeV

N. Zachariou et al., Physics Letters B 808, 135662 (2020) 12



A2 and BGO-0OD: Measurement of various observables for d*(2380) studies

A2: Measurement of multiple polarizatieniobservables at A2 (2, Cx(n), Py(n))
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@
_oA2data(n) | e— Models without d*(2380)

Models with d* (2380)
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BGO-0OD: Unpolarized cross section for the coherent 2n° production on the deuteron
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- —— Summed phase space term & 3 BWs:
E,, = 2380 MeV/c?, T = 70 MeV/c?
E, = 2470 MeV/c?, T = 120 MeV/c?
E, = 2630 MeV/c®, T = 130 MeV/c®
®  BGOOD data, sequential decay
— BWit: E, =2615% 14 MeWC
T =148 + 29 MeV/c?

Many more results and discussion

— Talk of Dan Watts this morning

T T. C. Jude et al., Phys. Lett. B 832, 137277 (2022)
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nn photoproduction: From the free proton to lead

Daa dominates at low energies
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FSI and experimental observables (deuteron)
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@ Significant reduction in the total cross section i
@ Agreement between free and quasi-free protons cos(®,)

for the beam helicity asymmetry and angular distributions
— Absorptive but not rescattering nature of FSI (?)
— Polarization observables well-suited for studying in-medium modifications (?)
— Measurements of polarization observables with heavier targets!?
— Still ... careful case-dependent consideration is vital!

A. Kiiser et al. [A2Collaboration] Eur.Phys.J.A 52, 9 (2016) 15



Photoproduction on heavier nuclei

Goal: Search for in-medium modifications of baryon resonances

= Pronounced in-medium effect:
No bump structure in the photoabsorption cross-section measured for y + A
— not fully explained in a model-independent way

0.6

o/A(mb)

0.4

0.2

V. Muccifora, et al., Phys. Rev. C60 (1999) 064616
I | | | | I I I I I |
i { Open symbols: y + p
i & Full symbols: y+ A

E’ _
ﬁ.ﬁ } L&LL
& ‘--i Hlﬁn} i{é

1.5
E.(GeV)

— Second resonance region: No
strong experimental indication for
significant modifications of

D13(1520) orS (1535)

— Search for modifications of the
D33(1700) resonance

— First measurement of the beam
helicity asymmetry for
photoproduction on heavy targets
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A2: Beam helicity asymmetry for t’n (C. Al, Pb)
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2 0 0.5 1 15 2 the D33 wave

*13-‘1: b
V. Sokhoyan et al. [A2 Collaboration], Phys. Lett. B 802, 135243 (2020)
V. Sokhoyan et al. [A2 Collaboration], Phys. Rev. C 97, 055212 (2018)

@ Agreement between free proton and solid target data
@ Very small differences for the MaTm model with/without FSI
@ Removing the D, wave results in very large differences for Carbon (and other nuclei)
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Beam helicity asymmetry for i’y (C, Al, Pb) A2

lé{esults of the Fourier analysis

04 + [
1r¢| 1 TG ; .
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[°(D,) = A;sin®, + A, sin 20,
A1: contribution of the D33 wave
A2: interference with other resonances

@ First study of the production of n°q pairs on heavy nuclei
and of the beam helicity asymmetry with heavy targets

@ Agreement between free proton and nuclear targets

@ Final State Interaction observed to be small

@ Asymmetry signal (absorption but no rescattering!?

@ Detailed theory calculations needed!

The method works!
= Alternative approach for studying in-medium effects
- Low FSI effects
= High statistics data sets needed for further confirmation!
= Other possibilities: e.g., use linearly polarized photons or
other reactions (dependent on the topic of interest)

V. Sokhoyan et al. [A2 Collaboration], Phys. Lett. B 802, 135243 (2020)
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Compton scattering on the proton and light nuclei

Highest statistics data set for Compton scattering on the proton do| —do |

below pion threshold (with linearly polarized photons 23 = & 7

— accurate extraction of the scalar polarizabilities o|+doy
54 o = 98.1-108.4 MeV 5 - @, = 130.3 - 140.4 MeV 02 E_ W, = 118.7 - 1404 MeV
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E. Mornacchi et al. [A2 Collaboration], Phys. Rev. Lett. 128, 132503 (2022)



Compton scattering on the proton and light nuclei

Highest statistics data set for Compton scattering on the proton do| —do |
below pion threshold (with linearly polarized photons 23 = & 7
— accurate extraction of the scalar polarizabilities o|+doy

o, =118.7 - 1404 MeV

o, =98.1-108.4 MeV

©,, = 130.3 - 140.4 MeV
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By = 3.14 £0.21 £0.24 £0.20 + 0.35 on this data set!
E. Mornacchi et al. [A2 Collaboration], Phys. Rev. Lett. 128, 132503 (2022)

Next step: precise determination of the scalar polarizabilities of the neutron!

(MAMI PAC proposal: P.P. Martel, D. Hornidge, E. Downie)

— Compton scattering on >*He or deuteron

— Detection of low-energetic recoil particles needed to separate Compton scattering on *He

Further applications of recoil detectors: Measurement of the proton radius via dilepton
photoproduction at the low momentum transfer, measurement of the proton radius via
elastic electron scattering (PRES experiment at MAMI), applications for meson
photoproduction on nuclei, ...
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Ongoing developments with a He active target (scintillation-based)

Prototype target from MaX—Lab With eXternal = PTFE sheet covers printed circuit board, windows
PMT readout (in Mainz)

University

of Glasgory The New Active Target
Active Target
J.AM. Annand Pressure Vessel
11th Feb. 2016 Material Al Alloy
Loca Ring Signal

Dimensions mm

8 rings of SIPMT, each ring consisting B groups ol 4 BxBmm fikes
Total number of SiIPMT Bxlxd = 258,

Readout in groups of 16, each group connectad fo an op-amp.
16 signal oulputs

2 vias=voltage inpuis

= Al pressure vessel, no welds
+ Reuse Be outer windows from original Active Target

cut for SIPMT

Be Window Flange

\
|
1 L)
| 30 695
—
80
L

6 x 6mm J-Series SiPMT

Prototype with SiPMs inside the target

Ny

GEANT simulation of the active target in CB (J. Amiéh‘d' et ﬁl. )

20



Next steps: Detection of low-energy recoil particles with TPC

Segmented anode (‘p) Be windows of 0.5 mm thickness

{ Al o
96% He + 4% N, i T(e) = 720 MeV
10 atm
S | - -
N L _ 1
stainless st —ﬁ 4 Si Detectors 0.05 mm
- e & o (gaps of 50 mm)
z=i e — N
Anode :l-,_S mm of G-10 & 0.02 mm of Cu i— '*
Cathode: 1 mm of steel & 0.02 mm of Al
i Prototype TPC (ACTAF2)o

-

F4
Scintillators {l:gHm}, 2 mm

TPC as an active target (developed at PNPI):

@ Pressure up to 25 bar with hydrogen, deuterium, helium, argon, ...

@ AE~20-30 keV, AO~2-3°, ¢ can be accessed with a segmented anode

@ Vertex reconstruction (resolution better than 0.5 mm for Z)

@ Small size (diameter = 200 mm) possible, length of the active volume: ~20 cm
— Novel experiments with detection of low-energetic recoil particles!
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Separation of recoil particles with TPC (electron beam at MAMI)

Anode structure

Kinetic energy, ring 2 [MeV]

!.IIlIIII_|IIII|IIII|IIII|IIII|IIII|I!II|IIII

i ..I..I.i-{‘I. b N '|.' .| L | |.|l o || I I || ] Ij -I-I IO,

Tracks may extend to next rings

T

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

TTTT I!IIlIIII|IIII|IIIITIIII|IIII|IIII|I.III|IIII

Tracks stop at ring 2
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Summary

+~ Broad program for the measurement polarized beam/target/recoil asymmetries
+~ New results of baryon resonances, d*(2380), nucleon polarizabilities,...

~ Polarization observables measured on nuclear targets are less affected by FSI
compared to unpolarized cross sections

+ Recent asymmetry measurements for rt’n) heavy targets open a new path for
experiments of this kind

- New approach with detection of low-energy recoil targets with active targets
(scintillation-based, TPC, ...) enabling novel experiments in meson and dilepton
photoproduction, Compton scattering, electron scattering,...

: Cluster of Excellence Frecision Physics,
q Fundamental Interactions and Structure of Matter
— I

THE LOW-ENERGY FRONTIER
OF THE STANDARD MODEL

CarlZeiss Stiftung
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Thank you for your attention!
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Crystal Ball/TAPS experiment at MAMI (A2)

Mainz-Glasgow photon tagging spectrometer

rimary Beam 24 thin
plastic PID

P
Scintillators MWPCs
Focal Plane Detector
Focal Plane Target

\\‘\
d" S #

366 BaF, +72
PbWO Crystals
1°-20°in©

352 elements Jimator .

TAPS

MAMI-C Beam . Tagged
E,=1557 MeV \ --v photon beam 672 Nal Crystals
Radiator Crystal Ball 540 _4590in g

Polarized Butanol/ D- Butanol

@ High-Flux, Tagged, Bremsstrahlung Photon Beam
(unpolarized, linearly or circularly polarized)

@ Polarized and unpolarized targets

@ Recoil polarimeter

- Further developments: active He gas target,
active TPC high pressure TPC,...




Further ideas: Single n photoproduction of on nuclei

“ ...the current experimental work for quasifree scattering has thus far been limited to the
measurement of the total and differential cross sections... polarization show the promise of
discerning the subtle dynamics in meson photoproduction processes.”

Changing S mass
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5 :
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a0t

O.O3F
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Changing D A mass

Carbon target
Ey =750 MeV, p =100 MeV/c

Solid: no mass shift for D13(1520) and 811(1535)

Long-dash short-dash line: Masses increased
by 3%; Dashed: masses decreased by 3%

(Calculations with Walecka model)

@ Significant sensitivity to mass changes
in many kinematic regions both for S

and D13 resonances

@ FSI effects predicted to be small for
asymmetries

— Can be measured with high accuracy,
e.g, in A2

B.1.S. van der Ventel et al., Phys.Rev.C 68 (2003) 024601

In agreement with results from F. X. Lee et al., Nucl.Phys. A 603, 345 (1996)
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n: Beam helicity asymmetry (deuteron)

1700 - 1750 MeV 1750 - 1800 MeV 1800 - 1850 MeV 1850 - 1900 MeV
30 30 30 30 5
; I"(n,m,N)
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; : - quasifree proton
[ 31 : | quasifree neutron
_3{} 1 l e, ﬂ 1 1 E?ﬂ 1 | E?ﬂ 1 1
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@, [deg] Curves: fit to
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0 Bﬂ; - in{‘.l'[ N,n) the data
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Ty T e UJI -30
0 120 240 360 O 120 240 35[‘? 0 120 240 36(? 0 120 240 360
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A. Kaser et al., Eur.Phys.J. A52, 272 (2016) [A2 Collaboration]

Agreement between free and quasi-free proton data! ‘
1



CLAS: E observable for K'Y on the neutron

Ul
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BnGa fit including the new data + D13 at 2170 MeV

Reduction of ¥* in the fits of the existing LEPS data on X a with a new D13 resonance — New precise data on X
LEPS: D. Ho, et al., Phys. Rev. Lett. 118, 242002 (2017)
N. Zachariou et al., Physics Letters B 808, 135662 (2020) 11



Photoproduction of two neutral pions

Example: Significant reduction of the total cross-section was observed for the

deuteron target in several reactions, indicating strong FSI effects, but e.g. for the
production of 2 neutral pions, the beam helicity asymmetry is in excellent agreement

for the free proton (hydrogen target) and quasi-free proton (deuteron target) data

S0 (= 14151:1512Mw (7512 - 1573 MeV 7573- 1617 MaV
A quasifree p/f a L :
Lx free p . L.'f\\ / \ ,{ -IH“
0 O S xxf ;;
[ Sk A t_/’ —AF o5} BnGEH
i = . . --VK 12F BnGa 2

1545 1674 Mev (1674 - 1702 Mev

@[]

Black: free proton, Blue: quasi-free proton
M. Oberle, B. Krusche et al., Phys.Lett. B721 (2013) 237-243
[A2 Collaboration] 14



n°n differential cross-sections (proton target)

E = 1.3 - 1.4 GeV

cosl_ o [rad/m] cosfl_ ¢, [rad/m]

Angular distributions: Reasonable agreement with
a model including only the D, amplitude

V. L. Kashevarov, A. Fix et al., Eur. Phys., J. A 42, 141 (2009)
[A2 Collaboration]
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nn: Beam helicity asymmetry (proton)

0.2

0.2 0.2

0.2

E,=0.95-1.00 eV E,=1.00-1.05 GeV E=1.05-1.10 GeV E=1.10-1.15 GeV E,=1.15-1.20 GeV
0.1
n |}
0.1
02}
bl E=130135Gev| O1° - E,=1.20-145 GeV
0.1} o b 0.1} . 0.1} ”
0.05 % i 0.05h 4 . : oosk 7 -
_ i +\ # # \- H#,“F’
-0.05} i 8§ | O -0.05} L e
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N o5t 98 2 T w1t b 2 Yy we 3 st ™Mg—wF 1 s o TR T I TR
o_ [rad/n] ¢ [rad/m] o_ [rad/n] ¢_ [rad/x] o  [rad/n]

Run I and Run IT (open circles)

Predictions:

BnGa PWA (2014): blue dash-dotted
line

MaTm model: red dashed line

Fit of MaTm model to the present
data: solid green line

@ Significant differences at high energies between data and BnGa PWA

@ High impact fpor PWA can be expected

.... + add a reference to the existing data

V. Sokhoyan et al., Phys. Rev. C 97, 055212 (2018)
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A2: 1’n production, double polarization observables

a0 Ao | +hPyI®
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Dashed: only D33 wave, solid: A. Fix model, dashed-dotted BnGa PWA

J. R. M. Annand et al., Phys.Rev. C91, no.5, 055208 (2015)
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Photoproduction of n on nuclei

Are baryon resonances modified in the nuclear medium?
+~ Which mechanisms are involved?

+~ What can we learn about the origin of mass?

+ Can chiral symmetry be partially restored in the nuclear medium?

,—— 1, (1535)

=~ 600 MeV

" —/ 938)

X-sym. nature

113

.. In particular how N degenerates with
its chiral partner, the N*(1, 535). An
ambitious goal would therefore be to
measure N*(1, 535) decays, e.g., in the Nn
channel.” (The CBM Physics Book)

10



Interaction of mesons in nuclear matter

® results from inclusive (quasi-free) pion photoproduction
A-scaling of cross sections as function of kinetic energy T:

o~ 1: ’volume’, no absorption
o(A) AT) o ~ 2/3: ‘surface’, strong absorption
0t1 .,,0.4 ® w“”-mesons: strongly absorbed at
; ° energies sufficient to excite A;
0_9? I 1 but only very weak interaction
| . . - at small momenta
0.8} = ) — no bound-states possible
0.7} % } ® 1n-mesons: strong interaction also at
N {‘ i + very small momenta due to s-wave
0.6} : T S11(1535) resonance at threshold
[}.5j = — strong enough for
10 (quasi)-bound states?

B. Krusche, Cracow, June 2010



n: Beam helicity asymmetry (proton target)

d ol =~ 03 0.2
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o x! = 02
3 y | \ §
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Beam helicity asymmetry:
C + —_
We(p) ~a™(¢p) —a ()

0 0.5 1 1.5 2 0 0.5 1 1.5 2

QJT; [rad/m]
W<(¢) can be expanded as: Dotted line: fit with the first 3 terms of the
Nmax sine expansion (A1, A2, A3)
C o : Solid line: isobar model with 6 resonances
W ([m o Z An SN Ht,f) Dashed line: only D33 wave
n=1 V. L. Kashevarov, et al., Phys. Lett. B 693, 551 (2010)
[A2 Collaboration]

Both unpolarized and polarized data indicate the dominance of
the D33 wave at energies Ey < 1.2 GeV 15



Beam helicity asymmetry (proton target)

¢ i
- @ & n ! ."-.x 0.15 :
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lid line : full model prediction
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Mmax Dashed line: only the D33 amplitude.
W ( !}f’} — A” SINN !}b V. L. Kashevarov, et al., Phys. Lett. B 693, 551 (2010)
n=1

A1represents purely the contribution of the D, wave

A2 is sensitive to interference terms
A3 is negligible

Both unpolarized and polarized data indicate the dominance of
the D33 wave at energies Ey < 1.2 GeV 3



Single n° production
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P. Adlarson et al., Phys.Rev. C92 (2015) no.2, 024617
MAMI 2006: R. Beck, R. Leukel, and A. Schmidt, Acta Phys. Pol. B 33, 813 (2002); R. Beck, Eur. Phys. J. A 28, 173(2006)

CLAS: M. Dugger et al., Phys. Rev. C 76, 025211 (2007)
GRAAL: O. Bartalini et al., Eur. Phys. J. A 26, 399 (2005)

- Interpretation within further partial wave analyses



FSI in mixed pion channels
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Fig. 11. Total cross section for incoherent double-pion photc

production on a deuteron for different charge channels. Soli

and dashed curves are obtained with and without final V]

interaction. Dotted curves show the corresponding elementar

cross sections. In 777~ and 7°7? channels they are calculated

as a sum of the cross sections on a proton and a neutron. The
data are from ref. [38] (circles) and ref. [39] (triangles).

This feature is easily explained by the relatively large
momentum transfer associated with the production of two
pions. Firstly, it leads to a reduction of the region of small
distances between the nucleons, where the NN interac-
tion is sizeable. Furthermore, more importantly in the neu-
tral channel where also the coherent transition (without
deuteron break up) is possible, is the nonorthogonality of
the initial and final NN wave functions in IA. As a conse-
quence, the IA contains part of the coherent reaction. The
size of this “nonorthogonal contribution” is roughly given
by the coherent cross section (see, e.g., [40]) and depends
strongly on the momentum transfer to the NN subsys-
tem (in the extreme case when the momentum transfer
goes to zero, the [A contains it completely). In particular,
this effect leads to a large role of NN FSI in the single
7' photoproduction on the deuteron where the coherent
channel turns out to be quite sizeable. Again, the role of
orthogonality in the 7w reactions is reduced because of
a significantly increased momentum transfer. Comparison
with the available data in fig. 11 shows that the agreement
in the 777~ and 7~ 7" channels is quite satisfactory. Devi-
ation from the 797" data should arise from the same origin
as that discussed above for the corresponding elementary
reaction.

A. Fix and H. Arenhovel, Eur. Phys. J. A 25, 115{135 (2005)
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Double meson photoproduction

Goal: Gain a good understanding of the spectrum and properties of baryon resonances
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= At high energies: Multi-meson final states play a role of increasing importance!
= Access to resonances with cascading decays
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1’n production off the proton

0
o
|

Run I (blue solid triangles)

Run II (black open circles)
CBELSA/TAPS: green stars
CBELSA/TAPS: cyan open triangles
GRAAL: red open crosses

g b R BN A B A2 (2009): magenta open squares
5l P - BnGA PWA: blue dash-dotted line

u,,q,_ YP = A(1232)n: magenta dashed
! yp = S11(1535)mn°: black dotted
yp - a,(980)p: cyan solid

w
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g
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O, (YP = 7'np) [ub]
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I

—_
1
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New data set:
@ Improved statistics: More than 1.500.000 events for the unpolarized
cross-section and more than 1.000.000 events in the polarized sample
@ Kinematic fit applied
@ Event-based data (5D) sample obtained
@ Finer binning and extension of the energy coverage to the threshold region
@ Total cross-section, angular distributions, Dalitz plots and beam helicity asymmetry
extracted — input for PWA with a potentially high impact
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Double pion production (I* and I°)

Linearly polarized photon beam, unpolarized target:

Quasi two-body consideration: 00 oDo—_m——Fw

3—5 — (S—E)D [1 + d/2 cos(20)]  <ARAARAARPF--—Fmmd.m. -

polarization plane ¢-90°

production plane

= Three-particle final state: additional plane!
= Additional polarization observables!

do — (d2) {1+ §)[/%sin(2¢) + I€ cos(26)]}
(DY) = I(21 — @), I}(D*) = -I*(211 — D7)

First measurement of I* and I¢
[ ] _) [ J
inyp - pn’n° at energies below ~700 MeV

==
— o

Data from CBELSA/TAPS above 1 GeV had a high impact on PWA: !
V. S., E. Gutz, H. Pee, et al., Phys.Lett. B746 (2015) 127-131 e
V.S., E. Gutz, V. Crede, H. Pee, et al., Eur.Phys.J. A51 (2015) no.8, 95 production plane
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Double pion production (I* and I°)
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Solid curve: fit to the data with third order cosine/sine series,
dashed curve: BnGa PWA 2014 from (E. Gutz, V. Crede, V. S., H. van Pee, et al., Eur.Phys.J. A50 (2014) 74)

Significant differences between data and BnGa PWA predictions!

Simon Gardner (A2 Collaboration) 16



Single nproduction
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V. Kashevarov et al., Phys.Rev.Lett. 118 (2017) no.21, 212001v




Single nproduction

T,F, X, and E for vp — np
Data: A2MAMI-15 (T,F), GRAAL-07 (%), CLAS-15 (E). Red - full solution, - T]MAIDDS
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Single n and n' production

Black lines: full solution (solid), background (dashed), S1; + bg (dash-dotted).
Green - 7MAID-2003Regge. Blue - SAID-GE09. Magenta - BnGa2014-2.
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Black lines: full solution (solid), background (dashed), N (1895)1/2~ (dash-dotted).

¥ Run-l
A Run-ll
B Run-lll
O CBELSA/TAPS-09

2
i
=S,
..... = RS |
1 s < B i
1.65 18 185 19 195 2 205

Green - nMAID-2003Regge. Cyan - Huang-13.

o [ub]

1.5

B Run-lli

O CBELSA/TAPS-09
O SAPHIR-98

= ABBHHM-68
AHHM-76

=
S e el | g e

24 25 26 2.7
W [GeV]

n

Particle JP  overall Ny Nx AK XK Np Arw
N /27 2

N{1440) 1/2 Fokses T T * s

N{1520)3/27  #4+= FEEE R PR

Ny I.;_].'SS:I 1/27 4+ #xkk  kdkdE % &

N{1650) 1727 wwwes #Ek kg HAkE KW Ek kR

N{IGTS) 527 #+x= T T ¥ + #

N{1680) 5/2F wsss  swdn dans S

NOTOD) 3/27 wws #% Hk #* # * HAF

N(1T710) 1,-"2-" sk RmEk Mk wkEk kx & ok

:"'-'{ITEHJR;'Q"' ok wEE R W kE

N{1860) 5/2% =+ #k - ®

N{I8T5) 3/27  swxx Bk ¥ WhE B

N{1880) 1/27 =« % * *

N{1895) 1/27 +« s #* k=

_"'.'1_'IE}[II-[IJ.'jJ-"‘_E'-r S HEE Ok T -

N(1990) 7/2F  ++ £ wk *

N{2000)5/2F sk A K

N(2040) 3/2F » *

N{2060)5/27 == s ok P

N2y 1/2t « *

N(2120)3/27 =*= % *4 # "

N{2ID0) T/27  wowes Wk o 5

N(2220) 9/2F  ++e= -

N(2250)9/27 ##+x Hdk

N(2300) 1/2F s e

N(25T0)5/27 +=+ ok

N(2600) 1127 #xx Fk

N(2700) 13/27 #= e

V. Kashevarov et al., Phys.Rev.Lett.

118 (2017) no.21, 212001V

10



Single n'production

Data: A2MAMI- CBELSA/TAPS-09 (red), CLAS-09 (blue)
Red line - full solution
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cos®,

V. Kashevarov et al., Phys.Rev.Lett. 118 (2017) no.21, 212001v
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Single n and n' production

do/d2 [ub/sr]

_Single n production _Single n prpductiqn

0.08F
(b) +
0.2| It 5 . 0.06} 4
o 0.04}*=
0.1 & e
E 0.02} 1t
ol W=1888 MeV Il W=1888 MeV c . W=1925 MeV 1 W=1938 MeV
0.3F ' ' ' 1F ' : : c ' : ' ' 1 ‘ ‘ :
(C} P (d) ,_'g 0.08} + + 1t
0.2 © 0.06} + -
0.04} ™ {i
0.1
o 0.02 -
ol2 W=1938 MeV i W=1956 MeV _ Al W=1944 MeV W=1956 MeV
A b8 O 05 11 -05 ® B5 |1 4 @5 @ 05 1-¥ .65 & a5 3
0059;1 cosO,

V. Kashevarov et al., Phys.Rev.Lett. 118 (2017) no.21, 212001v

= Overall: Good agreements with CLAS and CBELSA/TAPS data
-+ In some bins systematic discrepancies (upto 10%) with CBELSA/TAPS data
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Single meson production: data on polarization observables

Target Polarization - . : |
Photon Polarization X y 7 Ja ﬁ(ﬁ‘)' {1 — P cos(2¢)
unpolarized o | - T - + px(—p™Hsin(2¢) + pSr°F)
linearly polarized % I P G — py(=T + pi"Pcos(2¢))
circularly polarized | — | F = E = pz(—pf;'ncs'.n(gq-))+P§;rc5)}

E for pn° G for pm° G for nm*

1 E - I:E'ES-E'HE} MeV - 1 E_ { K. Spieker, Bonn
0.5 K. Spieker, Bonn _ 0.5 - $

E, =585 MeV

—
BnGa_2014 01 — JiiBo2016-3.1

0.5 r [ — BG2014-01 2] MAID-07
: ;81163_2014_02 - SAID-CM12 | . : s 05 F — BG2014.02(2] — sADCMi2
S M e e - TCF E,=(464-497) MeV
F. Za,Bonn -1 [ 1 1 IF- _1-_|;...I..¢..I..¢..l.a...l:
-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1-
T for nmt* F for nrt* E for pn
T T 1 1 T T i P ——— v
0.5 green line: MAID 2007
: blue line: SAID CM12

red line: BG2011-02

b /2. RN “
\ i — BnGa_2014.01
-05F 0.5 — BnGa.2014.02
. 0.89 GeV — JiiB02016-3.1

P P S T “ - - — SAID-GE09 E =1125 MeV
4 08 0 08 1+ 1 <08 0 05 1 «bioti.. NIUOR ST
-1 -0.5 0 0.5 -t
F. Afzal, Bonn F. Afzal, Bonn

@ See talk of Natalie Walford for further results: 22.08.2017, Parallel Session (A2), 14:30
@ Data on beam asymmetry X published for 1214 < W < 1450 MeV (S. Gardner et al., Eur.Phys.J. A52 (2016) no.11, 333)
@ New data taken on X for single n° for determination of E2/M1 ratio with improved systematics 13



Single meson production: data on polarization observables

Target Polarization - . : |
Photon Polarization X y z 6 = aphdl {1 — Py"X cos(2¢)
unpolarized o | - ¥ - © p(—pl"Hsin(26) + pF)
linearly polarized % I P G — py(=T + pi"Pcos(2¢))
circularly polarized | — | F = E = pz(—pf;fncs'.n(gq-))+P§;rc5)}

@ Extraction of E for nucleons bound in
deuteron in progress

@ Total inclusive polarized cross-section

0 .
extracted for 7T production

Single n° polarised cross section

—
g 700
E r’ ®*  This work
IET 600 m ' ~ MAID proton + neutron
bg B : I‘-l ®  GDH results
2 500 14t
' .
o o | ARZH
400 — $ &
— *’
300/ /! e
| : R
0200— % EXY
- ¢ b\, F. Cividini, Mainz
100+ 4 ;" il:\\
b L LN
0 “;!‘ ‘;1‘___ e e e Sk
0 bl h'-".ll-."'oin'li"'.‘; S i
L | L L 1 | L L L | ! ! | | I L l L ! L
200 400 600 800 1000 1200

energy of photon beam[MeV]

@ See talk of Natalie Walford for further results: 22.08.2017, Parallel Session (A2), 14:30

13



Below pion threhold: Compton scattering

0 20 40 60 80 100 120 140 160
0, [
V.S., E.J. Downie, E. Mornacchi, J.A. McGovern, N. Krupina,Eur.Phys.J. A53 (2017) no.1, 14

Fit result

== Fit uncertainty
DATA
Systematic errors

Fit on our £, results using Baldin sum rule
constraint gives:

BChPT framework:

10-4 fm? B
10.2/20

F2.3
28751
v2 /ndf

a1 = 37538 104 fm®
x?/ndf =17.1/20

B

At low energy, the measurement of the beam asymmetry Z, provides
an alternative way to extract 3,

do
dQ

_dUJ_HdG"

( )[1+p,Z,cos(2¢)] where [Z,= do. 0,

g l0:¢)=>

High-precision measurements of the beam asymmetry and
unpolarized cross-section planned in the end of 2017!



Experimental setup

Mainz Microtron (MAMI)
E <1.6GeV

IL,!L Tagger/End point tagger

| Primary Beam

i /

- |
/ ) III II|
|.' Focal Plane /4 i |
\e_ \\ J ]
ﬁml\ ﬁ
I"II II 2 17

! : !

A i/

i '

Tapgging
Spectrometer

Focal Plane

o B

RTM3

Target

E =E -E
Yy e

- tagg

Upgrade — experiments with ~4 times
higher rates will be possible!

@ High-Flux, Tagged, Bremsstrahlung Photon Beam: Unpolarized, Linear, and Circular
@ Polarized and Unpolarized Targets

@ Recoil polarimeter

-~ Development of an active He gas target in progress 3



Single n and n' production

Black lines: full solution (solid), background (dashed), S1; + bg (dash-dotted).
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V. Kashevarov et al., Phys.Rev.Lett. 118 (2017) no.21, 212001v
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Single nproduction

1950

1957
a 1

cose,

Data and nMAID full solution

V. Kashevarov et al., Phys.Rev.Lett. 118 (2017) no.21, 212001v
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n’n production
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Baryon resonances
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Goal: Gain a good understanding of the spectrum and properties of baryon resonances
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Single n° production: beam asymmetry
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Text and references will be
-~ Intdfgfetation within further partial wave analyses



n’n production, single and double polarization

a0 a0 T 45 1e a7
cos e‘q Cos G)p M(np) [GeV]

M(np) [GeV] cos O

(Data are shown in a quasi two-boy approach)

Dashed: only D33 wave, solid: A. Fix model, dashed-dotted BnGa PWA

J. R. M. Annand et al., Phys.Rev. C91, no.5, 055208 (2015) o5



Scalar polarizabilities

Proton Electric Polarizability Proton Magnetic Polarizability
..................... |sssssssssssssssss
_>
|++++++++++++++ [NNNNNNNNNNNNN /
* a: electric polarizabilty * 3: magnetic polarizability

* Proton between charged parallel plates: @ Proton between poles of a magnet:

“stretchability” “alignability” o



First look in December 2012 data

Proton magnetic polarizability

| SSSS5S555S5SS55SSS /
Diamagnetic + ‘
9 o B

Paramagnetic 1

pion cloud
Paramagnetic
| NNNNNNNNNNN /

A(1232)
Magnetic polarizability: proton between poles of a magnetic

Rory Miskimen (Bosen 2009)



Measurement of o and 8

AMw? cosfsin® #

Vo E[H] B
! ! ﬁcm{l 4+ cos? I';']2

Aar + 'D{I:.vl..-'fl ] ; {ET]

where E:[gm 15 the pure Born contribution, while

s—M?* 4 3t t
w = =t H‘=a_r+:+:::r5(l—|—h—|2) (7)
are the photon energy and scattering angle in the Breit
(brick-wall) reference frame. In fact, to this order in the
LEX the formula i1s valid for w and # being the energy
and angle i the lab or center-of-mass frame.




Beam Target Recoil Target + Recoil
x Yy’ 2’ ! ' 2 2’
T i z T 2 T z
unpolarized o 0 T 0 0 P 0 T, L, T
linear pol. ) H (-P) G| Oy (-T) O, L) (T,) (—Ly) (—Ty)
circular pol. 0 / 0 F Oy 0 O, 0 0 0 0




Baryon resonances

56 S=1/2;L=0:N Ny 2+(939) 939 MeV
S=3/2:L=0;N=0 Ag)p+(1232) 1232 MeV

70 S=1/2;L=1:N=0 Ni/2-(1535) Ny o~ (1520) 1530 MeV
S=3/2;L=1;N=0 N /2- (1650)Ny 5~ (1700) Nj o~ (1675) | 1631 MeV
S=1/2;L=1;N=0 Ay /5-(1620) Ag /- (1700) 1631 MeV

70 S=1/2L=1; Ny /2- (2090) Ny - (2080) 2151 MeV
S=3/2;L=1; Ny/2- N3/o- Ns/2- 2223 MeV
S=1/2;,L=1;N=2 Ayjo-(2150)  Agyo- 2223 MeV

56 S=1/2;L=1;N=1 Ny/2- Ng/2- 1779 MeV
S=3/2;:L=1;N=1 Ay /o (1900)A3/5- (1940) A5 /5-(1930) | 1950 MeV

56 S=1/2;L=2:N=0 Ny 2+ (1720)Nj5 o+ (1620) 1779 MeV
Ay s (1910) Ay o+ (1920) Ag o+ (1905) Ao+ (1950) | 1950 MeV

N3 o+ N o+ 1866 MeV

N=0| Niae  Nyjor(1900) Np/os (2000) Npjps (1990) | 1950 MeV
S=1/2;L=2;N=0 Azt As o+ 1950 MeV

70 S=1/2;L=3:N=0 Ns/2- N7/2- 2151 MeV
S=3/2;L=3;N=0 | Ny/- Nj/2- (2200) N7 /5 (2190) Ngjo-(2250) | 2223 MeV
S=1/2:L=3:N=0 Asja- Agyn-(2200) 2223 MeV

56 S=1/2;L=3;N=1 Nj/2- N7 /o- 2334 MeV
Ag/p- (2350)  Agja-  Agyo-(2400) | 2467 MeV

N7+ Ng/o+(2220) 2334 MeV

As/a+ Aq/2+(2390) Ag 2+ (2300) Ay 2+ (2420) | 2467 MeV

Ng/2-  Nyjya-(2600) 2629 MeV

Az/a- Ag/a- Ayrja- Aggye-(2750) | 2893 MeV

Niyja+ Nigja+(2700) 2781 MeV

S=3/2:L=6;N=0 | Ag/o+ Ay Apgjor Apspp+(2950) | 2893 MeV

70 S=1/2;L=7;N=0 Ni3z/2- Nis/2- 3033 MeV
56 S=3/2L=T;:N=1| Ays- Ayz)/o- Ays/2- A7/~ 3264 MeV
56 S=1/2;L=8;N=0 Nis/o+ Nyz/o+ 3165 MeV
S=3/2:L=8;N=0 | Aj3/2+ Ay o+ Aj7/o+ Ajg/a+ 3264 MeV

Table 20: Multiplet structure of nucleon and A resonances. The table contains all known reso-
nances except radial excitations of the Ny /54 (939) and Ay (1232).
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Introduction

Goal: Gain a good understanding of the spectrum and properties of baryon resonances
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Introduction

Goal: Gain a good understanding of the spectrum and properties of baryon resonances
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Introduction

Goal: Gain a good understanding of the spectrum and properties of baryon resonances

m_= 396 MeV
R. G. Edwards et al., Phys. Rev. D 84, 074508 (2011)

MeV A
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Spin polarizabilites

E, = 267 — 282 MeV E, = 286 — 307 MeV
oy L
0.3 — HDPV
0.25) — ByPT

""D TR T (S O (Y LI N Y | Logecpe o Jowsop o g o e el i M B | ""D TR T I (G O Y LI N Y | { T AR TN T e PO N N AN OO () PO SN | NI B |
0 200 a0 60 80 100 120 140 160 180 0 20 a0 60 B0 100 120 140 160 180
Compton 6, (deg) Compton 0, (deg)

@ Recent data (MAMI) and older data (LEGS) are shown along with
Dispersion Relation (HDPV) and ChPT (ByPT) predictions.

G. M. Huber, C. Collicott, arXiv:1508.07919 (2015)
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Single pion production

E
dQ)
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Legendre expansion of the diff. cross section
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Single pion production

Legendre expansion of the diff. cross section

dﬂ_ EJI-r'i.'rm;l.’

a0 z‘a A7 (W) Py(cosB) tmax =2
A
| T |

S+P+D waves are good up to about 850 MeV



Single pion production

Legendre expansion of the diff. cross section

dﬁ zfmur
o = 2 AX(W)Pi(cos) lmax =3
k=0

L1015

)= ] 5 L’

ANTOI

L1400 ] 55 WAy

=
Iy
=

F waves become important around 1 GeV

k= B L




Single pion production

Legendre expansion of the diff. cross section

dﬂ- EEHE.LI
10 = >, A7(W)Pi(cos8) {max =4
k=0
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around 1.2 GeV also G waves become clearly visible in forward direction




Single pion production

Legendre expansion of differential cross section

/ A, is the total cross section from 2013 MAMI T:.TEU data

A

9

W [Gw; < ' ' resonant contributions in
partial waves up to
G waves (L=4) are visible
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Polarized target (slide taken from R. Miskimen)

Frozen spin target
« 2 c¢m butanol « P~oO%

 target polarized at 25 mK - > 1000 hours relaxation time
« 0.6 T holding field




Polarized active target (slide taken from R. Miskimen)

Development of a scintillating polarized target for Mainz

Needed for double-polarized Compton scattering measurements near
pion threshold

* Polarizable scintillator developed at UMass

v Proton polarization = 70%

v Relaxation time = 22 hours

v Light output = 30% of standard plastic
scintillator

v High clarity for thicknesses up to 1 mm

He-*He-Mixture

]

Quter Vacuum Seal —_
Wavelength shift
Detector Board sk s

5iPM's target cup
T=B0K

Inner Vacuum Seal



Polarized active target (slide taken from M. Unverzagt)
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EPT (slide taken from M. Unverzagt)

* [nstallation of EPT during 2012

Primary Beam

-

- -
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| I

i i - I

N ¢ "I A Tugging

\\'\-._ __.____fiwx B Hpectrantlir

Focal Plane Detector A /

e /
A Pt it i -
Target

EPT

Same working principle as main tagging spectrometer
E,=1445-1595 MeV

AE.= 2.5MeV
Non-permanent installation infront of main Tagger



Crystal Ball/TAPS (slide taken from M. Unverzagt)

Crystal Ball:

672 Nal(Tl) crystals

93,3% of total solid angle

Each crystal equipped with PMT
LIV . R (R g
E, (EJGev)" 2° g9
At=25nsFWHM  Old)= S (0)
TAPS:

Up to 510 BaF  crystals

Polar acceptance: 4-20°

At =0.5 ns FWHM

i
i:—lm&"" I,B“,."'Iﬂ
E, JE,IGeV




Targets (slide taken from M. Unverzagt)

« LH,/ID, used for high rate meson production (n/n")
- Length: 3cm, 5cm, 10cm

» |3He/l*He H H H H
| | |

* Polarised Butanol/D-Butanol
- Transverse and longitudinal polarisation
- Lenght: 2 cm
- Dynamic Nuclean Polarisation
- Max. Polarisation: 50%
- Holding filed: 0.44 T

- Relaxation time: T~1000h

* Solid Targets




Polarized active target (slide taken from R. Miskimen)

Target assembly

PhD, Maik Biroth, Mainz



He gas active target

Unmversity

of Glasgow The New Active Target
Active Target
J.R.M. Annand Pressure Vessel
11th Feb. 2016 Material Al Alloy

PCB Locaton Ring Signal'Biag PCE

Be Window Flange

Dimensions mm i

SignalVinas
onnector

o P-I;I_'E Sheet PTFE Shaat
b= g.omm

2 0mm ———

0 (5mm /'/
Al -Nylar

102

6595

e Photon Beam

420

Gxf mm SiPMT

PCE Lecation Hing

Signial/Bias PCB

& rings ol SIEMT, each ring consisting B groups ol 4 AxBmm liles
Todal number of SiPMT BxBicd = 256,

Readoul m groups of 16, each group connectad fo an op—amp
18 signal aulputs

2 vims=vollage inpuis

= Al pressure vessel, no welds

* Reuse Be outer windows from original Active Target

» PTFE sheet covers printed circuit board, windows "
cut for SIiPMT 6 x 6mm J-Series SiPMT



n’n production, double polarization observables

do dﬂ{}
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Motivation

» The width for A(1232) is changed in the nuclear medium from 100 MeV to
~190 MeV in good agreement with the BUU model (University Gie3en)

calculations
300+ N '
[\ rol)
o501 III .,;‘ s <O(A)A >
n'
E EDD __;".‘-‘IL
i..:-.. /N =100 MeV
o 150} / i -
< N
o 100f [ I+ =190 MeV |
| N
50| / s o
oL / ......

—200 100

Vs-m a[l‘v‘le‘v'l

B. Krusche, Progress in Particle and Nuclear Physics 55 (2005) 46—70
M. Post, J. Lehr, U. Mosel, Nuclear Phys. A 741 (2004) 81

0 100 200 300

» Second resonance region: No strong experimental indication for
significant modifications of D13(1520) or 811(1535)
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