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Home = Collections = Nobel Prize

Finding the Higgs boson: 2 win Nobel prize in
physics for unlocking mysteries of the universe

By Aszociated Press, October 08, 2013

STOCKHOLM — Nearly 50 vears after they
came up with the theory, but little more than a
vear since the world’s biggest atom smasher
delivered the proof, Britain’s Peter Higgs and
Belgian colleague Francois Englert won the
Nobel Prize in physics Tuesday for helping to
explain how matter formed after the Big Bang.
Working independently in the 1060, they

came up with a theory for how the
fundamental building blocks of the universe
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Higgs boson scientists win Nobel prize in
physics

ByJames I"Iorgan

. BBC Nex

clumped together, gamed mass and formed
everything we see around us today. The theory
hinged on the existence of a subatomic particle
that came to be called the Higgs boson — or
the “God particle.”

Bekylan pyslctst Francols Englert (L) and Britien pyelolst Peser
Higgs... (MARTIAL TREZZINIER )

Two scientists have won the Nobel prize in physics for their work
on the theory of the Higgs boson.
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This article is by Ned Potter, a senior vice president at the com|
firm RLM Finsbury and a former science correspondent for AR
and CBS News.

particles have mass, why things hold together, why
vou and I are able to exist. That something is the

The Higgs boson, the subatomic particle that has
brought a Nobel Prize to Francois Englert and Peter
Higgs, is so small that its discovery took 40 vears. It
is so big for physies, though, that it took on the
nickname the “God particle.”

Higgs boson.

Higgs, Englert, and their colleagues theorized in 1964
that there must be something that explains why other
particles have mass, why things hold together, why
vou and I are able to exist. That something is the
Higgs boson.
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Introduction

Atom

Molecule

Proton
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2m _+m_ ~ 1% of the proton mass!



Introduction

Proton
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"L >, Atom El 17y = 3T
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PDG (live)
2m _+m_ ~ 1% of the proton mass!

What about remaining 99%?




Introduction

Proton

Nucleo
Quarks

+ Understanding of the nucleon structure

= Baryon spectroscopy: Investigation of excited states
+ Search for modification of hadrons in the nuclear
medium

-~ Compton scattering: Extraction of polarizabilities



Nucleon resonances

Goal: Gain a good understanding of the spectrum and properties of baryon resonances

Above 1.9 GeV missing resonances are predicted by the symmetric quark models
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Resonances

Goal: Gain a good understanding of the spectrum and properties of baryon resonances

Lattice QCD confirms the number of the states in symmetric quark models
R. G. Edwards et al., Phys. Rev. D 84, 074508 (2011)

Experimentally: Broad overlapping resonances

- Partial Wave Analysis necessary
-~ Measurement of cross-sections and polarization observables

= Different production channels
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Most of the data obtained with N scattering
Channels different from nlN — Photoproduction experiments



Photoproduction

Goal: Gain a good understanding of the spectrum and properties of baryon resonances
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= At high energies: Multi-meson final states play a role of increasing importance!
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Photoproduction

Goal: Gain a good understanding of the spectrum and properties of baryon resonances
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= At high energies: Multi-meson final states play a role of increasing importance!
= Access to resonances with cascading decays
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Polarization observables

Systematic way to go: the complete experiment

for pesudoscalar single meson photoproduction:

8 carefully selected observables

(with beam, target and recoil polarization required) are needed to
predict all other experiments
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Double meson final states:

For a complete experiment, 15 observables are needed!
W. Roberts and T. Oed, Phys. Rev. C 71, 055201 (2005)



In-medium modifications

Goal: Search for in-medium modifications of baryon resonances

- Pronounced in-medium effect:

No bump structure in the photoabsorption cross-section measured for y + A

— not fully explained in a model-independent way

V. Muccifora, et al., Phys. Rev. C60

(1999) 064616

'[..6 ! J | T T

c/A(mb)

04 | i
ﬁ fﬁf

0.2

] | ] ] ] ]
Open symbols: y+p -
Full symbols: y+A |

Ut __
& - i Hl&ﬁ}n}i

1 1.5
E.(GeV)



In-medium modifications

» The width for A(1232) is changed in the nuclear medium from 100 MeV to
~190 MeV in good agreement with the BUU model (University Gie3en)
calculations
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» Second resonance region: No strong experimental indication for
significant modifications of D13(1520) or 811(1535)



In-medium modifications

New experiment at MAMI:

- First study of the modifications of the D33(1700) resonance

- First measurement and interpretation of polarization observables for the
~ Investigation of in-medium modifications along with differential cross-sections

Additional questions:

- Better understanding of the Final State Interaction (FSI)
- Understanding of the nature of the D33(1700): Is it dynamically generated?

We will extract:

Differential cross-sections and beam helicity asymmetry close to the 1°n
production threshold with C, Al, and Pb targets
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Scalar polarizabilities

Proton Electric Polarizability

E s 0. electric polarizability

N2

» Proton between charged parallel plates:

v

“stretchability”

W

Proton Magnetic Polarizability

» B, - magnetic polarizability

&
or o
® @ Proton between poles of a magnet:

Paramagnetism “alignability”

o

Diamagnetism

Bia <0 Bowa>0

@ Fundamental properties of the proton
@ Important to astrophysics, atomic physics, spin polarizability measurements, etc.
11



Polarizabilities: data and model predictions

Byt 1074 fm?]

ok

TAPS free

:Gﬁcﬂhamn}cr 2013 |

-
L
------

PDG (2012) values:

o = (12.0 £ 0.6) x 1074 fm?3

B,, = (1.9 £ 0.5) x 107 fm?

New (2014) PDG values:

a =(11.2+0.4)x10™ fm?3

B, =(2.5+0.4) x 107 fm?

7 8 9 10

Significant change between
reviews without introducing new
experimental data? New quality
data needed!

In the low energy range 23 is purely dependent on
Krupina and Pascalutsa, PRL 110, 262001 (2013)

12



Experiments

Jefferson Lab .k
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|
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ELSA
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The CBELSA/TAPS experiment

scifi detector
target Crystal

g Barrel

H, 11qu1ﬁer
radiator  dipole magnet beam -
dump',

¢ beam | | Y beam

.Y E Absorber

15



The CBELSA/TAPS experiment

H, liquitier

scifl detector
radiator  dipole magnet beam ™

\ target  Crystal

- \ dump’ \ g = Barrel
¢ beam l_‘ Tb?am I Iz é
T ' = g
quadrupole I | %TBLPS
|

Almost 4r coverage!




MAMI and Crystal Ball experiment

Mainz Microtro

@ Injector =3.5 MeV
@ RTM1 =14.9 MeV
@ RTM2 =180 MeV
@ RTM3 =882 MeV
@ HDSM =1.6 GeV

-~ High-Flux, Tagged, Bremsstrahlung Photon Beam: Unpolarized, Linear, and Circular
= Polarized and Unpolarized Targets

17



Crystal Ball/TAPS experiment

Crystal Ball:

@ 672 Nal Crystals
@ 24 Particle Identification Detector Paddles

@ 2 Multiwire Proportional Chambers

TAPS:
2366 BaF and 72 PbWO4 Crystals

@ 384 Veto Detectors

18



Polarizabilities: Existing data and model predictions
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Significant change between
reviews without introducing new
experimental data? New quality
data needed!

In the low energy range 23 is purely dependent on
Krupina and Pascalutsa, PRL 110, 262001 (2013)
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Compton Scattering: existing data

@ Highest statistics data set:

V. Olmos de Leon et al. Eur. Phys. J. A 10, 207-215 (2001) * ;PW—I_._..T'_ cens®

@ 200 hours of Compton scattering

20 cm IH target with TAPS

@ 180 MeV electron beam

2 Ey = 55-165 MeV, 59° < © < 155°

@ 1/3 acceptance of CB System!
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Open circles: F.J. Federspiel et al., Phys. Rev. Lett. 67, 1511 (1991)

Squares B.E. MacGibbon et al., Phys. Rev. C 52, 2097 (1995)
Curve: R.A. Arndt et al., Phys. Rev. C 53, 430 (1996)

20



Compton scattering: missing mass

E, =76 -98 MeV

]
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Good agreement in missing mass distribution for PARA, PERP and Monte
Carlo simulation

=

E. Mornacchi (Mainz), V. S., E. J. Downie (GWU)

Low background data set

21



Compton scattering: new cross-section data

E‘.=TE-E1 MeV E,= 86 - 98 MeV E, =98 - 107 MeV
i . " PRELIMINARY
S o 2o t sk
L= { |
%: = y i | 153 15 | l
5 i i
L= T i 10 I i ) s i { : t
- =l
ik AT S I R JG RT R T T
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c E- El.'
EI:E— t xS a0l [
= : : r 15 t ! + 15 ] +
o + + 1 ’ J, - } 1
E H
- sk
R N R T T BN R T T T/ TR R T
e[°]

Good agreement between old and new data
Improvement in statistics!

E. Mornacchi (Mainz), V.S., E. J. Downie (GWU)
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Extraction of the magnetic polarizability $

= At low energy, Bm1 can be extracted from the measurement of the
beam asymmetry 2 j:

do do do | —do
dQ(e $) = dQ( ) |1 + pyX3cos(2d)] where | X3= dcri—l—dcr::

E =100 MeV E =135MeV

B, (107 f)

Krupina and Pascalutsa, PRL 110, 262001 (2013)
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Compton scattering: angular distributions

¢ distribution for PARA and % “ _
PERP data. e _
cos(2¢) modulation coming 3—2 :
from polarized cross-section. % - _
(0. ) I
—(0.d) = 3
ng ™
a - - E -
E(B) 1+ pYZ3cos(2cb)} %E £ o5t
aa 7

AR

a -

E. Mornachhi (Mainz), V.S., E. J. Downie (GWU)



Compton scattering: beam asymmetry

23 . 25_PREL|M|NARY — ChPT: a=10.65 =3.15
il 80-100 MeV

Dispersion relations: «=10.65 p=3.15
HBChPT: a=10.65 p=3.15
Born contribution

—&®— DATA

——=&—— Systematic errors

f

0'2;_ 100-120 MeV == N. Krupina and V. Pascalutsa, PRL 110, 262001 (2013)
0_ ________________________________________________
e + == B. Pasquini, D. Drechsel, and M. Vanderhaeghen,
F Phys. Rev. C 76 (2007)
~0.4F
4)_5; == J. McGovern, D. Phillips, H. GrieBhammer,
osf EPJA 49, 12 (2013)
0.2F 120-140 MeV Systematical errors = normalization + polarization +
.- background + phase
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Compton scattering: beam asymmetry

23 , 2E_PRELIMINARY
0; 80-100 MeV +
04f N
0.6
0.8f - N n

100-120 MeV

e ———

IITIIIITI|1|I[IT1_111|

5
]
.....'\,w-!..'- .

o 120-140 MeV
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—0.85‘

B i b, .
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ChPT: a=10.65 p=3.15
Dispersion relations: «=10.65 p=3.15
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—&®— DATA

—&—— Systematic errors

© [°]

== N. Krupina and V. Pascalutsa, PRL 110, 262001 (2013)

== B. Pasquini, D. Drechsel, and M. Vanderhaeghen,
Phys. Rev. C 76 (2007)

== J. McGovern, D. Phillips, H. GrieBhammer,
EPJA 49, 12 (2013)

Systematical errors = normalization + polarization +
background + phase

Fit on our 23 results using ChPT theory and
Baldin sum rule constrain gives:

[B = (1152 2.6) x 104 fm3]

Fit by N. Krupina

Higher statistics data set will be taken in the
3 : . fut t MAMI facility in Mainz!
E. Mornachhi (Mainz), V.S., E. J. Downie (GWU) uture a acility in Mainz o5



Single n° production

total cross section of MAMI y,n° data

the red points are not a calculation, it is data!

P. Adlarson et al., Phys.Rev. C92 (2015) no.2, 024617
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Single nproduction
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V. Kashevarov (Mainz)
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Single nproduction

nMAID-2015d: differential cross sections ‘
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Single n and n' production

update for n photoproduction with new high-precision data: dos/dQ), 2, T, F, E

Eta-MAID update 2015 (with V. Kashevarov)

using the previous EtaMAID2001/2003 model extended by new resonances N*
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N(2190) T/27 s kkE  kEkkE C::) % *k *
N(2220)9/27 sk —

N(2250) 9/27 sorxx — o

N(2300) 1/2F *x *%

N(2570)5/27 == ok

O 7 N*in 2001/2003

O 15 N* new in 2015

only 3 N* resonances
in PDG below 2.6 GeV,
where we do not find
evidence for v,n

but everything is still preliminary

V. Kashevarov (Mainz)

29



Single nproduction

- werszsmev pvers ] b

A —— B

black circles: A2MAMI-14 blue lines: M AID-2003
blue circles: GRAAIL-07; green: CLAS-15 red lines: nMAID-2015d

V. Kashevarov (Mainz)

EtaMAID update by
Viktor Kashevarov



Single n and n' production

Black line: present solution, dashed: 71MAID-2003, magenta: BG2014-2; blue: SAID GEQ09
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V. Kashevarov (Mainz)
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Double n’ photoproduction

CBELSA/TAPS:

A: Polmax = 49.2% @Ey = 1300 MeV

B: Pol =38.7% @E =1600 MeV Data selected for 4y (+proton) events

- Produced via coherent
bremsstrahlung at a diamond crystal

v p — p n°n° clearly observed!

- Liquid hydrogen as target material

0.4

0.3

0.2

0.1

1 1 | | | 1 1 1 1 1 1 |
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Double n’ photoproduction

1600 1800 2000 2200 W, MeV
o [35,36]CBELSA (old)
e CBELSA/TAPS 1
N e CBELSA/TAPS 2
i o [32] GRAAL
_ J*u o [29] MAMI
] , © [29] MAMI
£ Pt
b [,-: 1! i i -
adt Ly
ol !
-—I_'_'_'——'_L._._,_|—|_,_|_|—I—I_|—I I_LI_I—
1000 1500 2000 2500
Ev , MeV

V. S., E. Gutz, V. Crede, H. van Pee, et al., Eur. Phys. J. A51 (2015) no.8, 95
A. Thiel , V. S., E. Gutz, H. van Pee et al., Phys.Rev.Lett. 114 (2015) no.9, 091803 33



Sequential decays in double n° production

'E,=2000-2100 MeV

1500

| Nk,&c i ! 500 i
w i T R R S e L : . | .. | : ;
108800 2000 3000 4000 B0 e 3000 4000
Y NE A m?(p’) [MeV?] m?(pr°) [MeV]?
© © L
70 e | f 4 <« T I §
T 6 ‘ ’ﬁ‘ ' F (1680—' T 6 t’i -
Proton S ’t , ] 8 wl’ff | !
! ] [ 0
i D (1520} 14 pi’ T ‘*{ ]
i "T ] i io* f (980),
T 2A(1232) ’,‘ 1 ok v
E_=2000 - 2200 MeV fo00 1200 1400 1600 1800 %OO(I)VI v 0=""%00 600 800 io'odo'oiz'od"
U. Thoma, M. Fuchs et al., PLB 659 (2008) 87 m(p’) MeV] i - m(r'n’) [MeV]
CBELSA/TAPS data Clear observation of cascading decays!

V. S., E. Gutz, V. Crede, H. van Pee, et al., Eur. Phys. J. A51 (2015) no.8, 95 34



Polarization observables in double meson production

Linearly polarized photon beam, unpolarized target:
Quasi two-body consideration:

98 = (58), [1 + 6/% cos(2¢)]

640 <m__ <700 MeV/c* _
Eyz 1200-1450 MeV 000"

f(¢) = A(1+5,Bcos2¢)

2500~

= Three-particle final state: additional plane!
- Additional polarization observables!

polarization plane ¢-90°

production plane
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Polarization observables

Linearly polarized photon beam, unpolarized target:

Quasi two-body consideration:
9% = (§8) o [1 + 813 cos(20)]

640 <m__ <700 MeV/c* _
Eyz 1200-1450 MeV 000"

f(¢) = A(1+5,Bcos2¢)

2500~

= Three-particle final state: additional plane!
-~ Additional polarization observables!

dd—g = (g—g) {1+ 6;[/° sin(2¢) + € cos(2¢)]}
f(p) = A(1+d (Bsm2¢ - Ccoszd)))

Limited ®* range ==

18° <@ <36° —
Eyz 970-1200 MeV 600k

1400~

polarization plane ¢-90°

production plane

First measurement of I°* and I in y'p — pn°n°!

production plane
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Polarization observable X

“ e, 05 5, T=. )
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Solid: D33(1700)_) ATt(D-wave

V. S., E. Gutz, V. Crede, H. van Pee, et al., Eur. Phys. J. A51 (2015) no.8, 95
V.S., E. Gutz, H. van Pee et al., Phys.Lett. B746 (2015) 127-131 36

» Dashed: D33(1700)—> ATt (S-wave) dominant



First measurement of I* and Iin yp — pn’n’°

| =B
q

d :
36 = (§8)o {1 + 8]/ sin(2¢) + I cos(2¢)]}
1° in the production plane
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(D) = -I*(21 — @) [¢(D7) = (21 — @)

970 — 1200 MeV 1200 — 1450MeV 1450 — 1650 MeV 970 — 1200 MeV 1200 — 1450 MeV 1450 — 1650 MeV

150501080 < m, < 1250 T1080 < m,. < 1250 T1080 < m,. < 1250 ] J%.5 1080 < m,, < 1250 |

71080 < m,, < 1250

—0.5
0.5-

—0.5
0.5

(1350 < m,,; < 1450

mp. < 1500 71450 < m,. < 1600 7

1400

_0.5- -- L 1 1 1 1 L
1500 < my,, < 1760 1600 < m,, < 1850 ] 0.5 1450 < mp, < 1640 T 1500 < m,, < 1760 ] 1600 < m,, < 185
100 200 300 100 200 300 100 2b0 300 100 200 300 100 200 300
o [°] b* [o]

Solid: D33(1700)—> ATt(D_wave), Dashed: D33(1700)—> ATt (S-wave) dominant
V. S., E. Gutz, V. Crede, H. van Pee, et al., Eur. Phys. J. A51 (2015) no.8, 95 38



I* and I°in yp — pn’n’ and N(1900)3/2* resonance
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nn photoproduction (proton target)

» The production of nt°n pairs best suited to study the D33(1700) resonance
s 1 acts as an isospin filter: Accessto yp — D33(1700) — A(1232)n— prt'n

~ T
r ’f
f’ J'
: A "4
f’ ;"
P wt el L
A A
N D33(1700) dominates close to the production threshold
: : 1 : : —
I CB-ELSA .
GRAAL Jal D (1940)"
3 T LNS Tohoku 1 !
MAM! : v !
= I 0.6} oy
5._ 2 b D33(17dO) ,f bl -~ -
© 0.4} o
1} : K
0.2}
‘‘‘‘‘‘ #f A s o
0 olstos

1 11 1.2 13 14 .
E [GeV] E [GeV]

V. L. Kashevarov, A. Fix et al., Eur. Phys., J. A 42, 141 (2009) [A2 Collaboration]
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Beam helicity asymmetry (proton target)

* gl = 03 0.2
('f) - \ 5 1.0 to 1.1 Gev 1.1 to 1.2 GeV
- b S
> f b T 02f
3 A = \ =
5 | \ =
b I'IEI' - 0.1}
X I}.Ef"f : .
2 1Y P N e B 0
- o el L
. g L Z
- g -..'-:.- T T :"_H_:_wﬁ e . o8
A T E L ,I{:j“ N; JJ___-" .I'". 0.1} ?
S W s ; A
— 0% 0.5 1 1.5 2 0 0.5 1 1.5 2
\ i 0.2 : - . 0.2 : . .
_ 1.2 to 1.3 GeV 1.3 to 1.4 GeV
'-L__,«-"“
Beam helicity asymmetry:
C + —
W (p)~c (¢p) —a (¢

W¢(¢) can be expanded as:

Mmax

WE () = Z A, sinng

n=1

0.5 1 1.5 2 0 0.5 1 1.5 2
tb,; [rad/m]
Dotted line: fit with the first 3 terms of the
sine expansion (A1, A2, A3)
Solid line: isobar model with 6 resonances
Dashed line: only D33 wave
V. L. Kashevarov, et al., Phys. Lett. B 693, 551 (2010)
[A2 Collaboration]

Both unpolarized and polarized data indicate the dominance of
the D33 wave at energies Ey < 1.2 GeV 41



Nuclear targets

Existing data sets:
» Measurements performed by the A2 Collaboration with proton and
deuteron targets

» Data on “He will be acquired in the near future

We are extracting:
» Differential cross-sections and beam helicity asymmetry close to

the °n production threshold with C, Al and Pb targets

» The structure in these observables is reasonably described by the D33(1700)

resonance within the isobar model for the proton target at E <1.2GeV
(A. Fix, et al.)

» Any changes of these observables beyond FSI will allow access to the
in-medium properties of the D33(1700)
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Example Spectra (Carbon target)

1100 - 1300 MeV
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Understanding of the FSI

Experimental method:
= Investigation of the FSI with light nuclei (deuteron, helium isotopes)
= Investigation of the coherent component
-+ Measurements with different targets
-~ New asymmetry data can be useful for the understanding of the mechanisms
of the FSI
and:

= Theoretical estimates: calculations for the dilution of the desired signal with
models such as the BUU transport model
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Nuclear targets

Example: Significant reduction of the total cross-section was observed for the

deuteron target in several reactions, indicating strong FSI effects, but e.g. for the
production of 2 neutral pions, the beam helicity asymmetry is in excellent agreement

for the free proton (hydrogen target) and quasi-free proton (deuteron target) data

S0 = 14151:1512Mw (7512 - 1573 MeV [1573- 1617 MaV
A quasifree p t' T / i -
« free p - “k \-#"1 Y & X
O == K AN e
i iﬂ A/ {_/ —-A F05f T -~BnGaf
I == . . -V K 12¢ BnGa 2
-50 L1617 = 1646 MEU 1546 1674 I".-'Is"u" 15?4 = 1702 Me‘-.-"

@[]

Black: free proton, Blue: quasi-free proton
M. Oberle, B. Krusche et al., Phys.Lett. B721 (2013) 237-243
[A2 Collaboration] 45



Example Spectra (Aluminium target)
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Difference in 3-body kinematics:

¢ dependence seen in the data 46



Example Spectra (Aluminium target)

0.4 0.4
I EY = 1250 MeV - Ev = 1350 MeV
02— e 0.2 Jf
OE%‘K‘%F o-
02 02
0.4 0.4
_‘ll‘ll‘l‘ || ‘ | ‘ | II|\II| II|\II\|I\II|\II|\ |
0

O

I A | | | | I | | | I |
50 100 150 200 250 300 350 50 100 150 200 250 300 850

¢ [deg] ¢ [deq]

@ Preliminary asymmetries seen in ~35% of Aluminium data

@ Curves: red fit to the data, black calculation within isobar model with FSI
(Alexander Fix)

@ Small asymmetry in energy binning — differential distributions

@ Detailed analysis in progress
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Summary

+ Understanding of the nucleon: Investigation of baryon resonances,
measurement of polarizabilities using Compton scattering

+ Search for in-medium effects

+* Measurement of the cross-sections and polarization observables
+* Several complex experimental facilities involved in the effort
+*New input for theoretical models to be obtained

+ Still a lot to do to, e.g to achieve a complete experiment in meson
production!

+ Ambitious program aiming to extract scalar and spin polarizabilities

+* Long-term programs progressing successfully at ELSA and MAMI



Summary

+ Understanding of the nucleon: Investigation of baryon resonances,
measurement of polarizabilities using Compton scattering

+ Search for in-medium effects

+* Measurement of the cross-sections and polarization observables
+* Several complex experimental facilities involved in the effort
+*New input for theoretical models to be obtained

+ Still a lot to do to, e.g to achieve a complete experiment in meson
production!

+ Ambitious program aiming to extract scalar and spin polarizabilities
+* Long-term programs progressing successfully at ELSA and MAMI

-~ Ongoing detector upgrades

~ New experimental technique (e.g. active targets)

-~ Unprecedentedly high-quality data will be taken in the future

+ Further development of theoretical models



Thank you for your attention!
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Baryon resonances

56 S=1/2;L=0:N Ny 2+(939) 939 MeV
S=3/2:L=0;N=0 Ag)p+(1232) 1232 MeV

70 S=1/2;L=1:N=0 Ni/2-(1535) Ny o~ (1520) 1530 MeV
S=3/2;L=1;N=0 N /2- (1650)Ny 5~ (1700) Nj o~ (1675) | 1631 MeV
S=1/2;L=1;N=0 Ay /5-(1620) Ag /- (1700) 1631 MeV

70 S=1/2L=1; Ny /2- (2090) Ny - (2080) 2151 MeV
S=3/2;L=1; Ny/2- N3/o- Ns/2- 2223 MeV
S=1/2;,L=1;N=2 Ayjo-(2150)  Agyo- 2223 MeV

56 S=1/2;L=1;N=1 Ny/2- Ng/2- 1779 MeV
S=3/2;:L=1;N=1 Ay /o (1900)A3/5- (1940) A5 /5-(1930) | 1950 MeV

56 S=1/2;L=2:N=0 Ny 2+ (1720)Nj5 o+ (1620) 1779 MeV
Ay s (1910) Ay o+ (1920) Ag o+ (1905) Ao+ (1950) | 1950 MeV

N3 o+ N o+ 1866 MeV

N=0| Niae  Nyjor(1900) Np/os (2000) Npjps (1990) | 1950 MeV
S=1/2;L=2;N=0 Azt As o+ 1950 MeV

70 S=1/2;L=3:N=0 Ns/2- N7/2- 2151 MeV
S=3/2;L=3;N=0 | Ny/- Nj/2- (2200) N7 /5 (2190) Ngjo-(2250) | 2223 MeV
S=1/2:L=3:N=0 Asja- Agyn-(2200) 2223 MeV

56 S=1/2;L=3;N=1 Nj/2- N7 /o- 2334 MeV
Ag/p- (2350)  Agja-  Agyo-(2400) | 2467 MeV

N7+ Ng/o+(2220) 2334 MeV

As/a+ Aq/2+(2390) Ag 2+ (2300) Ay 2+ (2420) | 2467 MeV

Ng/2-  Nyjya-(2600) 2629 MeV

Az/a- Ag/a- Ayrja- Aggye-(2750) | 2893 MeV

Niyja+ Nigja+(2700) 2781 MeV

S=3/2:L=6;N=0 | Ag/o+ Ay Apgjor Apspp+(2950) | 2893 MeV

70 S=1/2;L=7;N=0 Ni3z/2- Nis/2- 3033 MeV
56 S=3/2L=T;:N=1| Ays- Ayz)/o- Ays/2- A7/~ 3264 MeV
56 S=1/2;L=8;N=0 Nis/o+ Nyz/o+ 3165 MeV
S=3/2:L=8;N=0 | Aj3/2+ Ay o+ Aj7/o+ Ajg/a+ 3264 MeV

Table 20: Multiplet structure of nucleon and A resonances. The table contains all known reso-
nances except radial excitations of the Ny /54 (939) and Ay (1232).
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Introduction

Goal: Gain a good understanding of the spectrum and properties of baryon resonances
Above 1.9 GeV missing resonances are predicted by the symmetric quark models
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Introduction

Goal: Gain a good understanding of the spectrum and properties of baryon resonances

m_= 396 MeV
R. G. Edwards et al., Phys. Rev. D 84, 074508 (2011)
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The CBELSA/TAPS experiment

H, liquifier scifi detector

radiator ~ dipole magnet beam \ target  Crystal

- ' dump' _a = Barrel
¢ beam y beam = p_.. Nz g

QUadrupﬁlE: E TAPS
: 6,6 m :

» Tagger » Crystal Barrel
» 14 scintillator bars » 1290 Csl(TI) crystals
» MWPC » ©-coverage 30°-168°
» 480 scintillating fibres » TAPS

> Inner detector » 528 BaF, modules
» 513 scintillating fibres » Plastic vetos

» O-coverage 28°-172° » ©@-coverage 5.8°-30°
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Sequential decays
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Compatibility of the data sets

The CBELSA/TAPS experiment (Bonn, Germany)
H, liquifier scifl detector
dipole magnet beam \ target  Crystal

dump' é Barrel
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y beam

The GRAAL experiment (Grenoble, France)
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Compatibility of the data sets

» Different phase space %ﬂ: o F c
coverage B e T e
0.3 * -
e Different efficiencies 00k (@ F @)
T L B * . ¢ B ——
@ GRAAL coverage ~ 70% of 03 S b
events retained by 0 9% 0 9% 180
CBELSA/TAPS Ocu(™™)  (Deg.) Ocy(m)  (Deg.)

Assafiri, et al., Phys. Rev. Lett. 90
(2003) 222001.

3-body final state — 5-dimensional
phase space

Projections can be misleading!
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Compatibility of the data sets

Different phase space coverage
Different efficiencies

GRAAL coverage ~ 70% of

events retained by CBELSA/TAPS

Trying to repeat the acceptance of

GRAAL experiment
approximately:
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(2003) 222001.
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Single n° production
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P. Adlarson et al., Phys.Rev. C92 (2015) no.2, 024617
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Proton recoiling

E, = 1200 — 1450 MeV

E., = 1450 — 1650 MeV

L E, = 1450 — 1650 MeV

PR (SR T S T T SR T S T N T PR S T [ TN T T T N T T
100 200 300 b* [o] 100 200 300

—0.4

—0.4

Pion recoiling

E, =970 — 1200MeV T E, =970 — 120
PR TR N S T1 | PRI R

0 MeV

0.4

E, = 1200

L |¢

— 1450 MeV

E, = 1200 — 1450 MeV

E, = 1450

— 1650 MeV

E, = 1450 — 1650 MeV

PR RTINS T
100

IZ(I)()I ~ .36[]. . *l ;
o [°]

P(®*) = -I*(2rt — @") and I9(D") = (21 — @)

Solid: D33(1700)—> ATt

(D-wave) dominant

Dashed: D33(1700)—> ATt (S-wave) dominant

NP B B
100 200

7300




7°n photoproduction, Eric Gutz (Bonn)

5
'r'i',l

W = 1706 £ 64 MeV

0.5}

100 200 300

100 200

6* [deg]

300

100 200 300

E.G.. V. Sokhoyan, H. van Pee et al.
Phys. Lett. B 687 (2010), 11

Closed symbols:
I>(¢7)

Open symbols:
—(2m — ¢°)

Bars: Systematic error

estimate

Curves;
BnGa-PWA

Valencia model
M. Doring, E. Oset, U.-G. Meiliner
Eur. Phys. J. A 46 (2010) 315

Fix isobar model
A. Fix et al., Phys. Rev. C
82 (2010) 035207



7°n photoproduction, Eric Gutz (Bonn)
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Maximum Likelihood

The Method: Event-based maximum likelihood fit

Function which has to be maximised:

N
c=]1]« (&P
i—1

Product over /N data points &;

w: probability density distribution

ﬁ: parameter vector

L = Probability to reproduce

the data sample { X, ..., £} with a
given probability density distribution

Maximum of L reached
—> best description of the data.

Additional advantage:
No binning needed !

Data points:
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Probablity distributions:
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The CBELSA/TAPS
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» Tagger » Crystal Barrel
» 14 scintillator bars » 1290 Csl(TI) crystals
» MWPC » ©-coverage 30°-168°
» 480 scintillating fibres » TAPS

> Inner detector » 528 BaF, modules
» 513 scintillating fibres » Plastic vetos

» O-coverage 28°-172° » ©O-coverage 5.8°-30°



Measurement of o and 8

AMw? cosfsin® #

Vo E[H] B
! ! ﬁcm{l 4+ cos? I';']2

Aar + 'D{I:.vl..-'fl ] ; {ET]

where E:[gm 15 the pure Born contribution, while

s—M?* 4 3t t
w = =t H‘=a_r+:+:::r5(l—|—h—|2) (7)
are the photon energy and scattering angle in the Breit
(brick-wall) reference frame. In fact, to this order in the
LEX the formula i1s valid for w and # being the energy
and angle i the lab or center-of-mass frame.




Polarization observables

Single meson production:

W.-T. Chiang, F. Tabakin, Phys. Rev. C 55 (1997) 2054

1
X = S (|b1]* + |b2]* — |bs]> — | ba]?)

Double meson production:

VW. Roberts, T. OQed, Phys. Rev. C 71 (2005) 052002

INE 2R (—(by by *) — b by * — b by* — by by ™)
lol> = 23 (b by ™ + by b5™ + by by ™ + b by ™)

b;i: Transversity amplitudes



In-medium modifications
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1500 — 1600 MeV
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