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Scalar polarizabilities

Proton Electric Polarizability

E s 0. electric polarizability
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» Proton between charged parallel plates:
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“stretchability”
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Proton Magnetic Polarizability

» B, - magnetic polarizability

&
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® @ Proton between poles of a magnet:

Paramagnetism “alignability”

o

Diamagnetism

ﬁdla <0 ﬁmm >0

@ Fundamental properties of the proton
@ Important to astrophysics, atomic physics, spin polarizability measurements etc

(e.g. for proton radius puzzle)



Existing data and model predictions
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@ Significant change between reviews
without introducing new experimental
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Goal: high-precision measurement of the scalar polarizabilities of the proton

+ New high-precision unpolarized cross-sections

- New high-quality data on the beam asymmetry z

-~ New single data set with small statistical and systematic errors 3




Compton scattering on the proton: Existing data

@ Highest statistics data set:
V. Olmos de Leon et al. Eur. Phys. J. A 10, 207-215 (2001) [ cacea, , e
@ 1/3 acceptance of CB System!
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Triangles: P.S. Baranov et al., Phys. Lett. B 52, 22 (1974);

P.S. Baranov et al., Sov. J. Nucl. Phys. 21, 355 (1975)

Open circles: F.J. Federspiel et al., Phys. Rev. Lett. 67, 1511 (1991)
Squares B.E. MacGibbon et al., Phys. Rev. C 52, 2097 (1995)
Curve: R.A. Arndt et al., Phys. Rev. C 53, 430 (1996)
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Beam asymmetry

At low energies, the measurement of the beam asymmetry, >, is an alternative way to
extract BMl (N. Krupina and V. Pascalutsa [PRL 110, 262001 (2013)])
- Measurements with linearly polarized photons and liquid hydrogen target
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Pilot experiment at MAMI

750 hours recommended by the PAC 2012
(E. J. Downie et al., MAMI-A2/06-2012)

¢ Experiment performed in June 2013
o E = 883 MeV

beam

@ Radiators: Diamond, Copper

@ 10 cm liquid hydrogen target

@ Trigger: CB energy sum > 40 MeV

@ Linear polarization maximum ~130 MeV

Data taken:
Full target:
@ Diamond with perpendicular orientation: ~69 h
@ Diamond with parallel orientation: ~67 h
@ Amorphous radiator ~42 h
Empty target:
@ Diamond with parallel orientation: ~55 h
@ Diamond with perpendicular orientation: ~55 h
@ Amorphous radiator ~39 h




Pilot experiment: Event selection

Selection of yp — yp: Ey = 79-98MeVand© = 30°-155°

e Ey teamy = 79 ~ 139 MeV

Counts

@ Selecting events with 1 y 5000
@ Missing mass cut
@ Subtraction of random timing background

@ Subtraction of empty target contribution

I 1 I. 1 1

- TR 1 : | L1 1
880 900 920 940 960 980

Missing Mass [MeV]

Red: PARA, Blue: PERP,
Black curve : Monte Carlo

+ More than 200,000 Compton scattering events (Ey = 79 - 139 MeV and e = 30°-155°)

+ Low background contamination in all energy bins

+ Good agreement between PARA and PERP for the unpolarized component



Pilot experiment: Data quality
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Pilot experiment: Beam asymmetry
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Born contribution
---------- ChPT: a=10.65 p=3.15
---------- Dispersion relations: a=10.65 3=3.15
................... HBChPT: «=10.65 B=3.15
9 DATA
- Systematic errors

== N. Krupina and V. Pascalutsa, PRL 110, 262001 (2013)

=m B. Pasquini, D. Drechsel, and M. Vanderhaeghen,
Phys. Rev. C 76 (2007)

== J. McGovern, D. Phillips, H. GrieBhammer,
EPJA 49, 12 (2013)

V. S., E. J. Downie, E. Mornacchi, J. A. McGovern, N. Krupina
arXiv:1611.03769 (submitted to EPJA)



Pilot experiment: Beam asymmetry
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Fit result
1 Fit uncertainty
—@— DATA
—=— Systematic errors

Fit on our 3 results using Baldin sum rule
constraint gives:

BChPT framework:

HBChPT framework:

Bmi = 2.8723 x 104 fm’
x?/ndf =19.2/20

Bl S5 0SS
x2/ndf = 17.1/20

V. S., E. J. Downie, E. Mornacchi, J. A. McGovern, N. Krupina
arXiv:1611.03769 (submitted to EPJA)
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Pilot experiment: Unpolarized cross-sections
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Blue points: pilot experiment data, red: Olmos et al.
(V. Olmos de Leon et al. Eur. Phys. J. A 10, 207—215 (2001))

Black curve: Born contribution, green curve:BChPT,
violet curve: DR (o = 10.65 fm’, = 3.15 fm?)

Agreement with Olmos et al.

Compatible (or better) statistics in the new sample
Extension of the angular coverage in the forward
direction

(~20% systematic error due to flux normalization)

ChPT fit: p = (2.8 £1.3) x 10 fm’ constrained with
Baldin sum rule o + B =14.0 x 10™* fm’ (Work of V.
Pascalutsa, N. Krupina and V. Lensky)

The uncertainty in polarizabilities scales linearly with
the error of the unpolarized cross-section or 23
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Achieved (pilot) and expected (proposed) precision

BChPT fits from P. Martel Error from ChPT fit (10~ * fm?)
With Baldin
Experiment | Compton ev )3 a0 )3 g0
P P S 3 dw > dw
: XE1
Pilot ~ 200000 2.5 1.3 1.1
N ABe
Proposed | ~ 4000000 -2%EL | 7 0.4 0.3
APEe:

@ Highest statistics data set: Olmos et al. (~50% of the existing data)

Dat: %+ 3 fized %+ 3
e e i Gt Pl V. Olmos de Leon et al.
TAPS a 121+04F1.0 11.9+05F1.3 Eur. Phys. J. A 10, 207—215 (2001)
(this work) I6] 1.64+04+038 1240703

e World data errors: Ao ~0.76 x 107 fm®, AB  ~0.62 x 10™* fm’
- Improved precision compared to the available data from different experiments based on a

single measurement!
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Proposed improvements

Proposed experiment: 600 hours of Compton scattering on the proton

- Measurement of the unpolarized cross-section and beam asymmetry =
- 10 cm LH2 target, Ey = 883 MeV

Improvement in statistics:

@ Reduced number of Cu and empty target runs — improvement in statistics ~2.5 times

Diamond (both settings)

Copper radiator

Experiment Full target Empty target | Full target Empty target
Pilot 116 hours 110 hours 42 hours 39 hours
Proposed 500 hours 70 hours 30 hours -

@ Tagger upgrade — improvement in rates ~5 times
+ Decrease of the statisitical error ~3.5 times (corrected for the scaling of the random hits)

Improvement in systematics:

= Stable linear polarization with the new setup

-+ Improvement in the tagger performance

= Pair spectrometer information will be available
-+ Smaller systematic errors (flux normalization, background subtraction)
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Beam asymmetry = : Expected precision

Pilot experiment

—U.Bi— M
9, []
V. S., E. J. Downie, E. Mornacchi, J. A. McGovern, N. Krupina
arXiv:1611.03769 (submitted to EPJA)

Proposed experiment (Monte Carlo simulation)
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ChPT: a=10.65 f=3.15
———— Dispersion relations: a=10.65 =3.15
——— HBChPT: a=10.65 p=3.15
Born contribution
—@&— DATA
——=s—— Systematic errors

= N. Krupina and V. Pascalutsa, PRL 110, 262001 (2013)

= B. Pasquini, D. Drechsel, and M. Vanderhaeghen,
Phys. Rev. C 76 (2007)

= J. McGovern, D. Phillips, H. GrieBhammer,
EPJA 49, 12 (2013)

E. Mornacchi, Mainz
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Pilot expriment: Unpolarized cross-sections

Pilot experiment

E, = 79-86 MeV

Blue points: pilot experiment data, red: Olmos et al.
(V. Olmos de Leon et al. Eur. Phys. J. A 10, 207—215 (2001))

Black curve: Born contribution, green curve:BChPT,
violet curve: DR (o= 10.65 fm’®, f= 3.15 fm?)

Proposed experiment (Monte Carlo simulation)
Black points: expected precision
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Summary

Proposed experiment: 600 hours of Compton scattering on the proton

* Successful pilot experiment (June 2013)

+ Systematic effects well-understood and required statistical accuracy estimated within
BChPT (V. Pascalutsa, N. Krupina, V. Lensky, P. Martel) and HBChPT (J. McGovern)

+ High-precision measurement of the unpolarized cross-section and beam asymmetry
for Compton scattering on the proton

-~ Determination of scalar polarizabilities of the proton with unprecedented high
precision from a single data set

-~ Extraction of the scalar polarizabilities with twice reduced uncertainties



Summary

Proposed experiment: 600 hours of Compton scattering on the proton

* Successful pilot experiment (June 2013)

+ Systematic effects well-understood and required statistical accuracy estimated within
BChPT (V. Pascalutsa, N. Krupina, V. Lensky, P. Martel) and HBChPT (J. McGovern)

+ High-precision measurement of the unpolarized cross-section and beam asymmetry
for Compton scattering on the proton

-~ Determination of scalar polarizabilities of the proton with unprecedented high
precision from a single data set

-~ Extraction of the scalar polarizabilities with twice reduced uncertainties

Thank you for your attention!
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Compton scattering

Compton Event

Crystal Ball

scintillators

cylindrical WC

Figure: R. Miskimen



Polarized active target (slide taken from M. Unverzagt)
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EPT (slide taken from M. Unverzagt)

* [nstallation of EPT during 2012
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Crystal Ball/TAPS (slide taken from M. Unverzagt)

Crystal Ball:

672 Nal(Tl) crystals

93,3% of total solid angle

Each crystal equipped with PMT
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Missing mass
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Statistical and systematic errors
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Beam asymmetry X : fits
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Measurement of o and 8

AMw? cosfsin® #

T =T ey O O, ()

‘B) . . . -
where £} is the pure Born contribution, while

s—M?* 4 3t t
w = =t E=E.I’EEU-H(1—|—E) (7)

are the photon energy and scattering angle in the Breit

(brick-wall) reference frame. In fact, to this order in the
LEX the formula i1s valid for w and # being the energy
and angle i the lab or center-of-mass frame.

N. Krupina and V. Pascalutsa [PRL 110, 262001 (2013)]



Measurement of o and 8
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Scalar polarizabilities

Proton Electric Polarizability Proton Magnetic Polarizability
..................... |sssssssssssssssss
_>
|++++++++++++++ [NNNNNNNNNNNNN /
* a: electric polarizabilty * 3: magnetic polarizability

* Proton between charged parallel plates: @ Proton between poles of a magnet:

“stretchability” “alignability” o



First look in December 2012 data

Proton magnetic polarizability
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A(1232)
Magnetic polarizability: proton between poles of a magnetic

Rory Miskimen (Bosen 2009)



Spin polarizabilites

E, = 267 — 282 MeV E, = 286 — 307 MeV
oy L
0.3 — HDPV
0.25) — ByPT

""D TR T (S O (Y LI N Y | Logecpe o Jowsop o g o e el i M B | ""D TR T I (G O Y LI N Y | { T AR TN T e PO N N AN OO () PO SN | NI B |
0 200 a0 60 80 100 120 140 160 180 0 20 a0 60 B0 100 120 140 160 180
Compton 6, (deg) Compton 0, (deg)

@ Recent data (MAMI) and older data (LEGS) are shown along with
Dispersion Relation (HDPV) and ChPT (ByPT) predictions.

G. M. Huber, C. Collicott, arXiv:1508.07919 (2015)
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Achieved (pilot) and expected (proposed) precision

BChPT fits (P. Martel)

Errors from ChPT fit (10_4 fm3)

With Baldin

Without Baldin

Experiment | Compton events 2.3 % 23, j—z 2.3 gfz 223, 6%
Pilot ~ 200, 000 2| X 3.3
1o el R | | 25 1.7 14
Proposed ~ 4,000, 000 TS 0.7 04 0.3 07105 04

@ Competing with experiments (not global average which includes double counting of the data)
@ Highest statistics data set: Olmos et al. (~50% of the existing data)

Data a+ 3 fized a + [ free
TAPS a 121+04F1.0 11.9+05F1.3
(this work) 16, 1.6041+08 1.220.7=x0.3

@ After combination of statistical and systematic errors:

Ao =(12.1+0.89) x 10™* fm’and AP = (1.6 = 1.08) x 10 *fm’
@ World data errors (without double counting): Ao ~0.76 x 10™* fm’, AP ~0.62 x 10* fm’
- Improved precision compared to the available data from different experiments based on a
single measurement!
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