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Scalar polarizabilities

Proton Electric Polarizability

E s 0. electric polarizability

N2

» Proton between charged parallel plates:

v

“stretchability”

W

Proton Magnetic Polarizability

» B, - magnetic polarizability

&
or o
® @ Proton between poles of a magnet:

Paramagnetism “alignability”

o

Diamagnetism

Bia <0 Bowa>0

@ Fundamental properties of the proton
@ Important to astrophysics, atomic physics, spin polarizability measurements, etc.
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Existing data and model predictions
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Existing data and model predictions

7 8

9

6 T T
: PDG (2012) values:
5t & o. =(12.0 £ 0.6) x 107* fm?
L W20 E1
i 4
4k B,, = (1.9 £ 0.5) x 107 fm?
f af 1| New (2013) PDG values:
] i i
— I o = (11.2 £ 0.4) x 1074 fm?3
S 2f
i B, =(2.5+0.4) x 107 fm?
i TAPS free
0; ________
| GricBhammer 2013 L




Existing data and model predictions

ok

TAPS free
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f i New (2013) PDG values:
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é : a = (11.2 + 0.4) x 107* fm?
Q 2r

PDG (2012) values:

B, =(2.5+0.4) x 107 fm?

Significant change between
reviews without introducing new
experimental data? New quality
data needed!
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In the low energy range 23 is purely dependent on
Krupina and Pascalutsa, PRL 110, 262001 (2013)
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Existing data
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Measurement of a and

Originally suggested measurement: cross section difference between linearly
polarized photons parallel and perpendicular to reaction plane

L _ 44l .
do = do proportional to o
z2dot — dol ,
Z = cos 70 proportional to 3

+ Independent extraction of o & 3 possible!



Measurement of a and

Originally suggested measurement: cross section difference between linearly
polarized photons parallel and perpendicular to reaction plane

L _ 44l .
do = do proportional to o
z2dot — dol ,
Z = cos 70 proportional to 3

+ Independent extraction of o & 3 possible!

+ New work by Krupina and Pascalutsa [PRL 110, 262001 (2013)]

- At low energies, the beam asymmetry, X, is the best way to extract [3

Talk of N. Krupina (this session) 5



Measurement of a and
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Systematical cross-checks

Goal: Determination of o and 3

@ Wemeasurec o. O
L || unpol

do do

dQ(H ¢) = dﬂ( ) [1 + py23cos(20)]

@ Measurement of the beam asymmetry 23

dot+ — doll
 dot + doll

@ Measurement of absolute cross-sections

@ Challenging with linearly polarized beam



Spin polarizabilities

@ These parameters describe the response of the proton spin to an applied electric
or magnetic field

@ Nucleon has 4 spin or vector polarizabilities:

yE1E1 yM1M1 yM1E2 yE1M2

@ Intimately connected to the nucleon’s spin structure:
Fundamental properties of the proton!
@ Higher order in incident-photon energy, small effect at lower energies

@ Need theoretical help in extracting values



Spin polarizabilities

Theory = .

7| p*HB | 3SSE | NNLO | DRs | Kmatrix xperiment
E1E1 | —1.4 —5.4 —4.5 —4.3 —-5.0 no data
MIM1 | 33 1.4 3.7 2.9 3.4 no data
E1M2 | 02 1.0 | —0.9 0.0 ~1.8 no data
M1E2 | 18 1.0 2.2 21 1.1 no data

0 | —30 20 | —0.7 | —0.7 23 | —1.01 £0.08+£0.13

. 63 | 68 | 113 0.3 11.3 8.0+ 1.8

@ Proton spin polarizability predictions and measurements in units of 10™ fm*
@ Note the large absolute error on Y.

-~ Forward spin polarizability has been determined by a “GDH-type” of sum rule

70 = —YE1E1 — "YM1M1 — YE1M2 — TYM1E?2

-~ Backward spin polarizability has been determined from a dispersive analysis of
backward-angle Compton scattering

Yo = —YE1E1 + YM1M1 — YE1M2 + YM1E?2




Spin polarizabilities

What to do?

-~ Use Compton scattering to probe them!

-~ Measurements with polarized photons and targets

-~ Low sensitivity at low energies, so we need higher energies, into A region
- Three asymmetries, 23, z, and 3 were chosen to obtain the spin

polarizabilities of the proton
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Asymmetries

1. Beam: circular, Target: longitudinal

2. Beam: circular, Target: transverse
R L R R
3 L Ol — 04y OL—0
2 oR +ob  of 4o
- +X —+Xx T +-Xx - —X

3. Beam: linear, parallel and perpendicular to scattering plane

Target: unpolarized

oll — ot

N ::T“ —|—+::rL

23

By measuring three asymmetries at different energies and angles, we can
conduct an in-depth global analysis to extract all four spin polarizabilities
with small statistical, systematic, and model-dependent errors
(R.Miskimen, P.Martel, A. Mushkarenkov)

D. Babusci et al., PRC 58 1013 (1998)



Experimental setup

Mainz Microtro

@ Injector =3.5 MeV
@ RTM1 =14.9 MeV
@ RTM2 =180 MeV
@ RTM3 =882 MeV
@ HDSM =1.6 GeV

-~ High-Flux, Tagged, Bremsstrahlung Photon Beam: Unpolarized, Linear, and Circular
= Polarized and Unpolarized Targets

12



Experimental setup

Crystal Ball:

@ 672 Nal Crystals
@ 24 Particle Identification Detector Paddles

@ 2 Multiwire Proportional Chambers

TAPS:
@ 366 BaF2 and 72 PbWO4 Crystals
@ 384 Veto Detectors

13



Selection

Selection of yp —» yp at low energies:

o E = 80 — 150 MeV

y(beam)

@ Selecting events with 1 y

@ Proton does not reach detectors at low energies
@ Ey cuts determined from MC

@ Missing mass cut

= Subtraction of random timing background

- Subtraction of empty target contribution

- Comparison with Monte Carlo

14



Elimination of ° background

® Main background source for Compton scattering: y p — pm°
@ Background production mechanism: 1 y lost
@ Kinematics similar to Compton scattering
@ Significantly (~100 times) higher cross-section
Low energy range:

+~ Can be removed at ~ 150 MeV (e.g. 145 — 150 MeV)
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Elimination of ° background

@ Main background source for Compton scattering: y p — pm°

® Background production mechanism: 1 y lost
@ Kinematics similar to Compton scattering

@ Significantly higher cross-section

® Higher energies: 1 y can take the largest part of the 1° energy

YP— pTT’ _YP—> P
6 i a0 [
N -
Up to ~ 250 MeV: "";‘ : :: anz—
2D (E, e) Cut! 4!1(5 b : 41}(:'H-5|uu N
Ey = 245-255 MeV IS :

L Y . : &7
anl Wk 1, g aplieo b e o
b 50 10D 150 200 250 300 b 50 100 150 200 250 300
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Comparison with Monte Carlo

Ey = 80 -100 MeV Ey = 100 -120 MeV Ey = 120 -140 MeV Ey = 140 -150 MeV

2500 = 2800

000 o
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Red: Monte Carlo, Blue: Data
® = 60°-160°

Y

@ Good agreement between data and Monte Carlo

@ Low background contamination in all energy bins

Preliminary
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Preliminary asymmetries (EY

120 -140 MeV)
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Preliminary asymmetries
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2 Preliminary results
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2 Preliminary results
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> : Experimental challenges

2X

@ Small Compton scattering cross sections
@ Large backgrounds
@ Butanol target (C4H90H): Coherent and incoherent reactions off C, O and He

@ Proton tracks are required to suppress backgrounds, but energy losses e.g. in the
target are considerable.

iy
ﬁjujmjul ,Efff\f\f\+
i Iiﬂflf‘@
me@ ?tf“
Coherent Compton Coherent m° on 2C S

on 2C [ **He [/ **0O 555. WV\/\K
3
- @»"WW n° on the proton
WS
\;m/\Q

Incoherent n? on 12C
Incoherent Compton on 12C

P. Martel (UMass, KPH Mainz)
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> : Experimental challenges

2X

@ Small Compton scattering cross sections
@ Large backgrounds
@ Butanol target (C4H90H): Coherent and incoherent reactions off C, O and He

@ Proton tracks are required to suppress backgrounds, but energy losses e.g. in the
target are considerable.
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WaVaY ?ﬁ}@ e g.:'iy l".“t"
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on 12C [/ **He / Onﬂo CS‘ .ai'.-ﬂ WVV\K
“,,‘_{a . o‘aﬂ 0
oa‘-"*r, P ot v 7~ on the proton
‘bg I_.r- (AT {“
Incoherent ® on 2C

Incoherant Combton on 12C

P. Martel (UMass, KPH Mainz)
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2 :Preliminary results

X

Ey=273-303 MeV, (H)y =100-120°
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P. Martel (UMass, KPH Mainz)



2 : Preliminary results

2X

-

E, = 273 — 303 MeV

0.6f ;,ﬁ 0.6f
0.4 0.4f
0.2+ 0.2F
of of
-0.2f .0.2f
0.4 0.4
0.6/ -0.6!
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

Compton Theta Compton Theta

@ First measurement of a double-polarized Compton scattering
asymmetry on the nucleon, =

@ Curves are from DR calculation of Pasquini et al.
Data have sensitivity to the y _spin-polarizability, with a

preliminary estimate of

=(—4.6 £ 1.6) x 10 4 fm*

yElEl

P. Martel (UMass, KPH Mainz) 24



Beam asymmetry = at higher energies

400— |_"|| | PARA data (Dec. 2012)
- il *
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ASimulated data includes both yp — yp and yp — pr°

C. Collicott (Mainz, DAL, SMU)
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Beam asymmetry = at higher energies

Compton scattering 2 asymmetry (Ey = 270-290 MeV)

0.4
B _m— ¥ (Dec. 2012)
0.3 L Dispersion relations
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0.2—
01—
; L
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B o o
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C. Collicott (Mainz, DAL, SMU)
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22 : Estimated experimental precision
y4
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Current Status

Experiment Status

pd v February 2011
2X

2 high energy v December 2012
3

o, B (23 low energy) V June 2013

) May 2014

27
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Summary

Scalar polarizabilities:
+ Events with signature of Compton scattering clearly identified
* Low-background data set obtained for the energy range 80-150 MeV

2 measured below pion threshold for the first time, analysis in progress

Spin polarizabilities:

» Double polarization observable X measured for the first time in the A region
» The asymmetries agree with a valueoty _ =(-4.6 £ 1.6) x 107 fm*
» Publication on £ _ in preparation (P.Martel et al.)

2 measured in the A region, analysis in progress (C. Collicott et al.)



Outlook

Short-term:

- Finish analysis and publish £ _, z, and o, {3 results
- Measurement of = will be performed in May (2014)
-~ Remeasure the observables X and = with significantly higher statistics

-~ Complete extraction of the proton spin polarizabilities

Medium and Long term:
-~ Development and installation of an active polarized target (prototype ready)
- Repeat the entire program on the neutron

- Installation of an active He gas target



Outlook

Short-term:

- Finish analysis and publish £ _, z, and o, {3 results
- Measurement of = will be performed in May (2014)
-~ Remeasure the observables X and = with significantly higher statistics

-~ Complete extraction of the proton spin polarizabilities

Medium and Long term:
-~ Development and installation of an active polarized target (prototype ready)
- Repeat the entire program on the neutron

- Installation of an active He gas target

Thank you for your attention!
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Real Compton Scattering — Hamiltonian

Expand the Hamiltonian in incident-photon energy.

Oth order ——  charge, mass
Ist order ——  magnetic moment

2nd order ——  scalar polarizabilities:

1 - 1 -
Hé?f) — —4ﬂ' {QHELEE -+ 5-;M1H2

3rd order ——  spin (or vector) polarizabilities:

He(?f) = —47 Eﬁ;glglﬁ : (E X E) — %"‘.:-Mmﬁ- (Fl X Fl)

—YM1E?2 E&'G’;‘ H; -+ YE1M?2 HU'GFI EJ]



Electric Dipole Polarizability

» Apply an electric field to a
composite system

» Separation of Charge, or
“Stretchability”

» Proportionality constant between

| electric dipole moment and electric
= fleld is the electric dipole
polarizability, agq.

%
Do

P=0

Provides information on force holding system together.



Scalar Polarizabilities — Conceptual

Magnetic Dipole Polarizability

» Apply a magnetic field to a
composite system

» Alignment of dipoles or
“Alignability”

» Proportionality constant between
magnetic dipole moment and
magnetic field is the magnetic
dipole polarizability, 7.

» Two contributions, paramagnetic
and diamagnetic, and they cancel

partially, giving Fp1 < afgq.

Provides information on force holding system together.



Previous Data — =g

Forward spin polarizability has been determined by a “GDH-type” of sum
rule

Y0 = —7YE1E1 — YM1M1 — YE1M2 — TYM1E2

1 >~ o —
o f 3/2(V) 01/2(1#’)0,“
4?1_2 v

3
1/
thr

= (—1.00 +0.08 £ 0.10) x 10™* fm*

Known to =~ 10%.



Previous Data — ~;

Backward spin polarizability has been determined from a dispersive
analysis of backward-angle Compton scattering

Yr = —7YE1E1 T YM1M1 — YE1M2 T+~ YM1E2
— (—38.7 £ 1.8) x 10~* fm*

where the pion pole contributes —46.7 and the dispersive part 8.0 4+ 1.8.

Note that the dispersive part is known only to about ~ 25%!



Incident Photon Beam — Glasgow-Mainz Photon Tagger

plastic scintillators

beam dump

352 channels

coincidence

AE = 4MeV at 1.6 GeV

Up to ~ 10%+/s

Refurbished to work
at 1.6 GeV

5-94% of Bremsstrahlung
spectrum

collimator

/!
photon beam /

target 191-channel microscope



Polarized Target

Dynamical Nucleon Polarization
Target material is butanol, C4H100

Dilution cryostat with bath of liquid *He/*He, T < 30 mK
P, ~ 90% with a relaxation time of 7 > 1000 hours.



> 3 — Estimated Experimental Precision
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Predicted Values

Extracting the proton spin polarizabilities would provide a useful
test of nucleon structure.

O(P3) | O(p%) | O(p%) [ LC3 | LC4 | 55E | BGLMN | HDPV | K5

ve1 | 5.7 | -14 | -18 | 32 | 28 | 57 34 43 | 5.0
2 | 1.1 0.2 07 | 0.7 | 08 | o 0.3 001 | -1.8
ve2 | 1.1 1.8 18 | 0.7 | 03 | .o¢ 1.9 2.1 1.1
| 1.1 33 290 | -14 | 3.1 1 2.7 2.9 3.4
o 16 39 | 36 | 31 | 48 | o 15 07 | 23

e | 4.6 6.3 58 | 18 | -08 | 8.¢ 7.7 93 | 11.3

Table: Values for the spin polarizabilities. O(p”) are Chiral Perturbation Theory
(ChPT) calculations. LC3 and LC4 are O(p®) and O(p*) Lorentz invariant ChPT
calculations, respectively. SSE is a Small Scale Expansion calculation. The
remaining three are all dispersion relation calculations. AT, AL e




Frozen Spin Target

Polarizing protons through Dynamic Nuclear Polarization (DNP):

Cool target to 0.2 Kelvin.
Use 2.5 Tesla magnet to align electron spins.

Pump ~ 70 GHz microwaves (just above, or below, the
Electron Spin Resonance frequency), causing spin-flips
between the electrons and protons.

Cool target to 0.025 Kelvin, ‘freezing' proton spins in place.
Remove polarizing magnet.

Energize 0.6 Tesla ‘holding’ coil in the cryostat to maintain
the polarization.

Relaxation times > 1000 hours.
Polarizations up to 90%.




Transverse Asymmetries - E,=315-346 MeV

= 0.4
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Above validity of dispersion relation.



Compton scattering: Polarisabilities

The polarisabilities can be defined in terms of the angular
momentum and parity of the incident and scattered photon.

A photon with total angular momentum L, is said to be electric
(EL) or magnetic (ML) if its parity satisfies:

meL = (1)t L = (—1)F

The vmie2 polarisability, for example, can now be described in
terms of the incoming and outgoing photon properties. In this
case, the incoming and outgoing photons carry total angular
momentum and parity given by 27 and 17 respectively.



Crystal Ball

The CB is a highly segmented Nal(Tl) detector (composed of 672
individual crystals) which surrounds the MWPCs, PID and target.

@ There are two gaps in the CB (beam entrance/exit) which results in

an angular coverage for the CB system (CB, MWPCs, and PID) of
(0 =20° — 160°) and (¢ = 0° — 180°)

@ The huge CB angular coverage is ideal for
Compton scattering experiments to
suppress the huge 70 background!

@ Excellent photon detection:
OF ~ 4% agp ~ 2’ Og ~
(better than crystal size!).

L

sin @

Cristina Collicott Measurement of 3 asymmetry for proton Compton scattering



Low Energy Expansion for parallel polarization:

do!l  do! e2 [V\” / 9 . 7 3
= ( ) vy ((1"515 —}—_,-'?fﬂ“:)—}—()(u')

dQ  dQBorm  2m
Low Energy Expansion for perpendicular polarization:
dot do+t e (w’

I/

m N m[h_n'u 2m

Difference: dependent purely on Q:

dot+ — dol dot — dol 22 AN = ; | |
- - g1(l — 22 O(v?
Ay ( df) )Bm‘n o ( ”) vV ap ( )+ O(v”)

Difference multiplied by z* = cos*(0): dependent purely on B:

L/

2
) y,u" (”"b‘l -+ ﬁﬂjlﬂ) + (:’(L«’H)

2.1 I A [ 2 7N 2
a3y G (L pRipder=t s ooy ¢ 1/ . .
= — - uu’;f!m:(:'} - 1)+ (J(u"i')
) <) Bosn 21 \ V

Low Energy Expansion: limited validity, dependence similar to ChPT



General information

Standard A2 Equipment is required:

-+ MAMI electrons
-~ Glasgow-Mainz Tagger
-~ CB-TAPS detector system

-~ Cryogenic Targets

Run Parameter 20/ 22; 23 and a1, Bm1
Electron Beam Energy 450 MeV 883 MeV
Target butanol LH>
Radiator Copper Diamond
Tagged Energy Range 100 — 400 MeV 100 — 400 MeV
Channel Energy Resolution 1 MeV 2 MeV
Beam Polarization circular linear
Target Polarization transverse/longitudinal none

14



Beam asymmetry = : existing data

200
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Beam asymmetry = at higher energies
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Beam asymmetry 2 _: systematic cross-checks
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Beam asymmetry X _: Preliminary results

Ey = 120-140 MeV

0.8 ¥ A A0o %0
3 ChPT:130 MeV, 0=10.8, B=4
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Beam asymmetry X _: Preliminary results
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Beam asymmetry X _: Preliminary results

Ey = 120-140 MeV
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¢ — full and empty target contributions
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Existing data and model predictions

Agreement between Pascalutsa (ChPT) and L'vov (Dispersion Relations)

Squares: Illinois,
F. J. Federspeil et al. Phys. Rev. Lett. 67 1511 (1991)
Triangles: MAMI,

A. Zieger et al. Phys. Lett. B 278 34 (1992)
Diamonds: SAL,

E. L. Hallin et al. Phys. Rev. C 48 1497 (1993)
Circles: MAMI,
V Olmos de Leon et al. Eur. Phys. J. A 10 207 (2001)

Dotted curves etc. different parts of calc.

Solid curve with error band, final calc

L'vov ChPT valu@s -
L'vov PDG values — —
ChPT




Existing data and model predictions

on L 126 MeV

{nyver)

.M.

el

V.

15

III 1 I.-I'I T II I__

10

(T L B Lt S |~'-'| 0

Circles: MAMI, V Olmos de Leon et al. Eur. Phys. J. A 10 207 (2001)
Squares: SAL, E. L. Hallin et al. Phys. Rev. C 48 1497 (1993)

The curves are: Klein—Nishina (i.e, Compton scattering off a classical pointlike particle with the

charge and mass of the proton) — dotted, Born graphs and Wess-Zumino-Witten (WZW)-anomaly — green
dashed, adding the p3 7N loop contributions of BPT— blue dash-dotted. The result of adding the
contributions, i.e., the complete NNLO result, is shown by the red solid line with band



Measurement of o and 8

AMw? cosfsin® #

Vo E[H] B
! ! ﬁcm{l 4+ cos? I';']2

Aar + 'D{I:.vl..-'fl ] ; {ET]

where E:[gm 15 the pure Born contribution, while

s—M?* 4 3t t
w = =t H‘=a_r+:+:::r5(l—|—h—|2) (7)
are the photon energy and scattering angle in the Breit
(brick-wall) reference frame. In fact, to this order in the
LEX the formula i1s valid for w and # being the energy
and angle i the lab or center-of-mass frame.




Measurement of o and 8

135 MeV
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Scalar polarizabilities

Proton Electric Polarizability Proton Magnetic Polarizability
..................... |sssssssssssssssss
_>
|++++++++++++++ [NNNNNNNNNNNNN /
* a: electric polarizabilty * 3: magnetic polarizability

* Proton between charged parallel plates: @ Proton between poles of a magnet:

“stretchability” “alignability” o



First look in December 2012 data

Proton magnetic polarizability

| SSSS5S555S5SS55SSS /
Diamagnetic + ‘
9 o B

Paramagnetic 1

pion cloud
Paramagnetic
| NNNNNNNNNNN /

A(1232)
Magnetic polarizability: proton between poles of a magnetic

Rory Miskimen (Bosen 2009)



Sensitivity to o
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Sensitivity to

110 MeV, 90 degrees
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E =110 MeV
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EV =110 MeV Ev =105-115 MeV
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Kinematics
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